
SetlX — A Tutorial

Version 2.2.0

Karl Stroetmann

Duale Hochschule Baden-Württemberg Stuttgart

stroetmann@dhbw-stuttgart.de

Tom Herrmann

Duale Hochschule Baden-Württemberg Stuttgart

setlx@randoom.org

August 13, 2013

mailto:stroetmann@dhbw-stuttgart.de
mailto:setlx@randoom.org

Abstract

In the late sixties, Jack Schwartz, a renowned professor of mathematics at the Courant Institute
for Mathematical Sciences in New York, developed a very high level programming language called
Setl [Sch70, SDSD86]. The most distinguishing feature of this language is the support it offers
for sets and lists. This feature permits convenient implementations of mathematical algorithms:
As set theory is the language of mathematics, many mathematical algorithms that are formulated
in terms of set theory have very straightforward implementations in Setl.

Unfortunately, at the time of its invention, Setl did not get the attention that it deserved.
One of the main reasons was that Setl is an interpreted language and in those days, the run
time overhead of an interpreter loop was not yet affordable. More than forty years after the
first conception of Setl, the efficiency of computers has changed dramatically and for many
applications, the run time efficiency of a languange is no longer as important as it once was.
After all, modern scripting languages like Python [vR95] or Ruby [FM08] are all interpreted and
noticeably slower than compiled languages like C, but this fact hasn’t impeded their success.

At the Baden-Württemberg Corporate State University, the first author has used Setl2

[Sny90] for several years in a number of introductory computer science courses. He has noticed
that the adoption of Setl has made the abstract concepts of set theory tangible to the students.
Nevertheless, as the original version of Setl is more than forty years old, it has a number of
shortcomings. One minor issue is the fact, that the syntax is quite dated and has proven difficult
to master for students that are mainly acquainted with C and Java. Furthermore, Setl lacks
any immediate support for first order terms. Therefore, Setl has been extended into the new
language SetlX. The main features that have been changed or added are as follows:

• SetlX supports terms in a way similar to the language Prolog. In particular, SetlX

supports matching. This makes SetlX well suited for symbolic computations.

• SetlX supports several ideas from functional programming. In particular, functions can be
used as a primitive data type. Furthermore, SetlX supports closures and the memoization

of functions.

• SetlX has support for regular expressions.

• SetlX provides backtracking.

• SetlX supports object oriented programming concepts.

• SetlX provides a small set of graphical primitives that support the animation of algorithms.

• Lastly, while Setl has a syntax that is reminiscent of Algol, SetlX has a syntax that is
more akin to languages like C or Java.

The language SetlX has been implemented by Tom Herrmann as part of his student research
project. Fortunately, for the time being he continues to maintain the language and even implements
new features.

Contents

1 Introduction 5

2 Whetting Your Appetite 8

2.1 Getting Started . 8
2.2 Boolean Values . 12
2.3 Sets . 13

2.3.1 Operators on Sets . 15
2.3.2 Set Comprehensions . 17
2.3.3 Miscellaneous Set Functions . 18

2.4 Lists . 19
2.5 Pairs, Relations, and Functions . 21
2.6 Procedures . 23
2.7 Strings . 23

2.7.1 Literal Strings . 24
2.8 Terms . 25

3 Statements 28

3.1 Assignment Statements . 28
3.2 Functions . 29

3.2.1 Memoization . 30
3.3 Branching Statements . 32

3.3.1 if-then-else Statements . 32
3.3.2 switch Statements . 33

3.4 Matching . 34
3.4.1 String Matching . 34
3.4.2 List Matching . 36
3.4.3 Set Matching . 37
3.4.4 Term Matching . 37
3.4.5 Term Decomposition via List Assignment 40

3.5 Loops . 40
3.5.1 while Loops . 40
3.5.2 do-while Loops . 41
3.5.3 for Loops . 42

4 Regular Expressions 46

4.1 Using Regular Expressions in a match Statement 46
4.1.1 Extracting Substrings . 47
4.1.2 Testing Regular Expressions . 48
4.1.3 Extracting Comments from a File . 48
4.1.4 Conditions in match Statements . 50

— 2 —

CONTENTS CONTENTS

4.2 The scan Statement . 50
4.3 Additional Functions Using Regular Expressions 53

5 Functional Programming and Closures 55

5.1 Introductory Examples . 55
5.1.1 Introducing Functional Programming . 55
5.1.2 Implementing Counters via Closures . 57

5.2 Closures in Action . 58

6 Exceptions and Backtracking 65

6.1 Exceptions . 65
6.1.1 Different Kinds of Exceptions . 67

6.2 Backtracking . 68

7 Classes and Objects 73

7.1 Basic Examples . 73
7.1.1 Introducing Classes . 73
7.1.2 Simulating Inheritance . 78

7.2 A Case Study: Dijkstra’s Algorithm . 79
7.3 Representing Complex Numbers as Objects . 83

8 Predefined Functions 88

8.1 Functions and Operators on Sets and Lists . 88
8.2 Functions for String Manipulation . 90
8.3 Functions for Term Manipulation . 93
8.4 Mathematical Functions . 94
8.5 Generating Random Numbers and Permutations 98

8.5.1 shuffle . 99
8.5.2 nextPermutation . 99
8.5.3 permutations . 100

8.6 Type Checking Functions . 100
8.7 Debugging . 101
8.8 I/O Functions . 101

8.8.1 appendFile . 101
8.8.2 deleteFile . 102
8.8.3 get . 102
8.8.4 load . 102
8.8.5 loadLibrary . 102
8.8.6 multiLineMode . 102
8.8.7 nPrint . 103
8.8.8 nPrintErr . 103
8.8.9 print . 103
8.8.10 printErr . 103
8.8.11 read . 103
8.8.12 readFile . 104
8.8.13 writeFile . 104

8.9 Miscellaneous Functions . 104
8.9.1 abort . 104
8.9.2 cacheStats . 105
8.9.3 clearCache . 105
8.9.4 compare . 105
8.9.5 getScope . 105

— 3 —

CONTENTS CONTENTS

8.9.6 logo . 106
8.9.7 now . 106
8.9.8 sleep . 106

A Graphical Library Functions 109

— 4 —

Chapter 1

Introduction

Every year, dozens of new programming languages are proposed and each time this happens,
the inventors of the new language have to answer the same question: There are hundreds of
programming languages already, why do we need yet another one? Of course, the answer is always
the same. It consists of an economical argument, a theological argument and a practical argument.
For the convenience of the reader, let us brievely review these arguments as they read for SetlX.

1. Nothing less than the prosperity and wellfare of the entire universe is at stake and only
SetlX provides the means to save it.

2. Programming in SetlX is the only way to guarantee redemption from the eternal hell fire
that awaits those not programming in SetlX.

3. Programming in SetlX is fun!

The economical argument has already been discussed at length by Adams [Ada80], therefore we
don’t have to repeat it here. We deeply regret the fact that the philosophical background of
the average computer scientist does not permit them to follow advanced theological discussions.
Therefore, we refrain from giving a detailed proof of the second claim. Nevertheless, we hope the
examples given in this tutorial will convince the reader of the truth of the third claim. One of the
reasons for this is that SetlX programs are both very concise and readable. This often makes it
possible to fit the implementation of complex algorithms in SetlX on a single slide because the
SetlX program is no longer than the pseudocode that is usually used to present algorithms in
lectures. The benefit of this is that instead of pseudocode, students have a running program that
they can modify and test. This and the conciseness of SetlX programs was one of the reasons for
the first author to adopt SetlX as a programming language in his courses on computer science:
It is often feasible to write a complete SetlX program in a few lines onto the blackboard, since
SetlX programs are nearly as compact as mathematical formulae.

SetlX is well suited to implement complex algorithms. This is achieved because SetlX provides
a number of sophisticated builtin data types that enable the user to code at a very high abstraction
level. These data types are sets, lists, first-order terms, and functions. As sets are implemented
as ordered binary trees, sets of pairs can be used both as symbol tables and as priority queues.
This enables a very neat implementations of a number of graph theoretical algorithms.

The purpose of this tutorial is to introduce the most important features of SetlX and to
show, how the use of the above mentioned data types leads to programs that are both shorter and
clearer than the corresponding programs in other programming languages. This was the prime
motivation of the first author to develop SetlX: It turns out that SetlX is very convenient as a
tool to present algorithms at a high abstraction level in a class room. Furthermore, SetlX makes
the abstract concepts of set theory tangible for students of computer science.

— 5 —

Chapter 1. Introduction

The remainder of this tutorial is structured as follows:

1. In the second chapter, we discuss the data types available in SetlX.

2. The third chapter provides the control structures.

3. The fourth chapter deals with regular expressions.

4. The fifth chapter discusses functional programming an closures.

5. The sixth chapter discusses the try-catch and throw mechanism and demonstrates the use
of backtracking.

6. Chapter number seven introduces classes and demonstrates that SetlX supports an object-
oriented programming style.

7. The final chapter lists and explains the predefined functions.

8. The appendix discusses the graphical primitives provided by SetlX.

This tutorial is not meant as an introduction to programming. It assumes that the reader has had
some preliminary exposure to programming and has already written a few programs in either C,
Java, or a similar language.

Downloading

The current distribution of SetlX can be downloaded from either

http://wwwlehre.dhbw-stuttgart.de/~stroetma/SetlX/setlX.php

or

http://randoom.org/Software/SetlX.

SetlX is written in Java and is therefore supported on a number of different operating systems.
Currently, SetlX is supported on Linux, Mac OS X, Microsoft Windows, and Android. The
websites given above explain how to install the language on various platforms. The distribution
contains the Java code and a development guide that gives an overview of the implementation.
For those interested in peeking under the hood, the source code of SetlX is available at

http://gitorious.org/setlx.

Disclaimer

The development of SetlX is an ongoing project. Therefore some of the material presented in
this tutorial might be out of date, while certain aspects of the language won’t be covered. The
current version of this tutorial is not intended to be a reference manual. The idea is rather to
provide the reader with an introduction that is sufficient to get started.

Encouragement

The autors would be grateful for any kind of feedback. The authors can be contacted via email
as follows:

Karl Stroetmann: stroetmann@dhbw-stuttgart.de

Tom Herrmann: setlx@randoom.org

— 6 —

http://wwwlehre.dhbw-stuttgart.de/~stroetma/SetlX/setlX.php
http://randoom.org/Software/SetlX
http://gitorious.org/setlx
mailto:stroetmann@dhbw-stuttgart.de
mailto:setlx@randoom.org

Chapter 1. Introduction

Acknowledgements

The autors would like to acknowledge that Karl-Friedrich Gebhardt and Hakan Kjellerstrand have
both read earlier drafts of this tutorial and have given valuable feedback that has helped to improve
the current presentation.

— 7 —

Chapter 2

Whetting Your Appetite

This chapter contains a short overview of the data types supported by SetlX and tries to whet
your appetite for the language by showing off some of the features that are unique to SetlX.
Before we discuss the more elaborate data types, we introduce the basic data types for numbers
and strings and show how to invoke the interpreter.

2.1 Getting Started

SetlX is an interpreted language. To start the interpreter, the file setlX has to be both executable
and part of the search path. If these preconditions are satisfied, the command

setlX

launches the interpreter. The interpreter first prints the banner shown in Figure 2.1, followed by
a promt“=>”. Commands are typed after the prompt. If the command is an assignment or an
expression, then it is terminated by a semicolon. However, complex commands like, for example,
loops are not terminated by a semicolon.

-====================================setlX=============================v2.2.0=-

Welcome to the setlX interpreter!

Open Source Software from http://setlX.randoom.org/

(c) 2011-2013 by Herrmann, Tom

You can display some helpful information by using ’--help’ as parameter when

launching this program.

Interactive-Mode:

The ’exit;’ statement terminates the interpreter.

-===============================Interactive=Mode==============================-

=>

Figure 2.1: The SetlX banner followed by a prompt.

The welcome banner of SetlX points out that we can call setlX with the parameter ‘ ‘--help”.

— 8 —

Chapter 2. Whetting Your Appetite 2.1. Getting Started

Doing this yields the output shown in Figure 2.2 below.

-====================================setlX=============================v2.2.0=-

File paths supplied as parameters for this program will be parsed and executed.

The interactive mode will be started if called without any file parameters.

Interactive-Mode:

The ’exit;’ statement terminates the interpreter.

Additional parameters:

-e <expression>, --eval <expression>

Evaluates next argument as expression and exits.

-x <statement>, --exec <statement>

Executes next argument as statement and exits.

-l <path>, --libraryPath <path>

Override SETLX_LIBRARY_PATH environment variable.

-m, --multiLineMode

Only accept input in interactive mode after additional new line.

-a, --noAssert

Disables all assert functions.

-n, --noExecution

Load and check code for syntax errors, but do not execute it.

-p <argument> ..., --params <argument> ...

Pass all following arguments to executed program via ‘params’ variable.

-r, --predictableRandom

Always use same random sequence (debugging).

--doubleDefault

--doubleScientific

--doubleEngineering

--doublePlain

Sets how the exponent of doubles is displayed.

-v, --verbose

Display the parsed program before executing it.

--version

Display interpreter version and terminate.

Figure 2.2: Calling setlx with the option “--help”.

The SetlX interpreter can be used as a simple calculator: Typing

=> 1/3 + 2/5;

and then hitting the return key1 will result in the following response:

~< Result: 11/15 >~

After printing the result, the interpreter provides a new prompt so the next command can be

1 In SetlX, statements can extend over many lines. If the user intends to use multiline statements, then she can

start the interpreter using the commandline switch “--multiLineMode”. In multi line mode, the return key needs

to be hit twice to signal the end of the input. Instead of using a commandline switch, the user can also issue the

command

multiLineMode(true);

to activate multiline mode. To switch back to single line mode, use the command “multiLineMode(false);”.

— 9 —

2.1. Getting Started Chapter 2. Whetting Your Appetite

entered. Incidently, the last example shows the first data type supported by SetlX: rational
numbers. A rational number consists of a nominator and a denominator, both of which are in-
tegers. SetlX takes care to ensure that nominator and denominator are always in lowest terms.
Furthermore, if the denominator has the value 1, only the nominator ist printed. Therefore, after
typing

=> 1/3 + 2/3;

SetlX will respond:

~< Result: 1 >~

The precision of rational numbers is only limited by the available memory. For example, the
command

=> 50!;

computes the factorial of 50 and yields the result

~< Result: 30414093201713378043612608166064768844377641568960512000000000000 >~.

If you prefer to calculate with floating point values, the easiest way is to add 0.0 at the end of
an expression because if an arithmetic expression contains a floating point value, the result is
converted to a floating point number. Therefore, the command

=> 1/3 + 2/5 + 0.0;

yields the answer:

~< Result: 0.7333333333333333 >~

Of course, the same can also be achieved via the command

=> 1.0/3 + 2/5;

Since the precision of rational numbers in SetlX is not limited, we can do things like com-
puting

√
2 to a hundred decimal places. Figure 2.3 on page 11 shows a program that uses the

Babylonian method to compute the square root of 2. The idea is to compute
√

2 as the limit of
the sequence (bn)n which is defined as

b0 := 2 and bn+1 :=
1

2
·
(

bn +
2

bn

)

.

In order to print a rational number in decimal notation with a fixed number of places, the function
nDecimalPlaces(x, n) has been used. The first argument x is the rational number to be printed,
while the second argument n gives the number of places to be printed. To run this program from
the command line, assume it is stored in a file with the name sqrt.stlx in the current directory.
Then the command

setlX sqrt.stlx

loads and executes this program. Alternatively, the command can be executed interactively in the
interpreter via the following command:

=> load("sqrt.stlx");

The output of the program is shown in Figure 2.4.

The last program also demonstrates that SetlX supports strings. In SetlX, any sequence of
characters enclosed in double quote characters is a string. For example, the hello world progam in
SetlX is just

=> "Hello world!";

— 10 —

http://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method

Chapter 2. Whetting Your Appetite 2.1. Getting Started

1 b := 2;

2 for (n in [1 .. 9]) {

3 b := 1/2 * (b + 2/b);

4 print(n + ": " + nDecimalPlaces(b, 100));

5 }

Figure 2.3: A program to calculate
√

2 to 100 places.

1: 1.5000

2: 1.4166

3: 1.4142156862745098039215686274509803921568627450980392156862745098039215686274509803921568627450980392

4: 1.4142135623746899106262955788901349101165596221157440445849050192000543718353892683589900431576443402

5: 1.4142135623730950488016896235025302436149819257761974284982894986231958242289236217849418367358303565

6: 1.4142135623730950488016887242096980785696718753772340015610131331132652556303399785317871612507104752

7: 1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276416016

8: 1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727

9: 1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727

Figure 2.4: The output produced by the program in Figure 2.3.

It yields the output:

~< Result: "Hello world!" >~

However, this only works in interactive mode. If you want to be more verbose2 or if you are not
working interactively, you can instead write

=> print("Hello world!");

This will yield two lines of output:

Hello world!

~< Result: om >~

The first lines show the effect of the invocation of the function print, the second line gives the
return value computed by the call of the function print(). As the function print() does not
return a meaningful value, the return value is the undefined value that, following the tradition of
Setl, is denoted as Ω. In SetlX, this value is written as om.

In order to assign the value of an expression to a variable, SetlX provides the assignment
operator “:=”. Syntactically, this operator is the only major deviation from the syntax of the
programming language C. For example, the statement

=> x := 1/3;

binds the variable x to the fraction 1/3.

Important: In SetlX, the names of variables have to start with a lower case letter. After the
first letter, the name can contain upper or lower case letters, digits, or underscores. If the first
letter is an upper case letter, then the identifier is interpreted as a functor. This notion will be
explained when discussing terms.

2 If you want to be much more verbose, you should program in either Cobol or Java.

— 11 —

2.2. Boolean Values Chapter 2. Whetting Your Appetite

2.2 Boolean Values

The Boolean values true and false represent truth and falsity. Boolean expressions can be
constructed using the comparison operators “==”, “!=”, “<”, “>”, “<=”, and “>=”. SetlX provides
the following propositional operators to combine Boolean expressions.

1. “&&” denotes the logical and (also known as conjunction), so the expression

a && b

is true if and only if both a and b are true.

2. “||” denotes the logical or, which is also known as disjunction. so the expression

a || b

is true if either a or b is true. Note that a || b is true if both a and b is true.

3. “!” denotes the logical not, (also known as negation). Therefore, the expression

!a

is true if and only if a is false.

4. “=>” denotes the logical implication. Therefore, the expression

a => b

is true if either a is false or b is true. Hence the expression

a => b

has the same truth value as the expression

!a || b.

5. “<==>” denotes the logical equivalence, so the expression

a <==> b

is true if either a and b are both true or a and b are both false. Therefore, the expression

a <==> b

has the same value as the expression

(a && b) || (!a && !b).

6. “<!=>” denotes the logical antivalence, so the expression

a <!=> b

is true if the truth values of a and b are different. Therefore, the expression

a <!=> b

is equivalent to the expression

!(a <==> b).

The operators “==” and “!=” can be used instead of the operators “<==>” and “<!=>”.
Furthermore, SetlX supports both the universal quantifier “forall” and the existential quan-

tifier “exists”. For example, to test whether the formula

∀x ∈ {1, · · · , 10} : x2 ≤ 2x

is true, we can evaluate the following expression:

— 12 —

Chapter 2. Whetting Your Appetite 2.3. Sets

forall (x in {1..10} | x ** 2 <= 2 ** x);

This expression checks whether x2 less than or equal to 2x for all x between 1 and 10. Syntacti-
cally, a forall expression is described by the following grammar rule:

expr → “forall” “(” var “in” setExpr “|” cond “)”

Here, var denotes a variable and expr is an expression that evaluates to a set s (or a list or a
string), while cond is a Boolean expression. The forall expression evaluates to true if for all
elements of s the condition cond evaluates to true. There is a generalization of the grammar
rule that allows to check several variables simultaneously, so we can write an expression like the
following:

forall (x in {1..10}, y in [20..30] | x < y).

If instead we want to know whether the formula

∃x ∈ {1, · · · , 10} : 2x < x2

is true, we have to write:

exists (x in {1..10} | 2 ** x < x ** 2);

This expression checks whether there exists a natural number x ∈ {1, · · · , 10} such that 2x is less
than x2.

Important: forall and exists statements do not create their own local scope. For example,
the sequence of statements

exists ([x, y] in {[a,b] : a in {1..10}, b in {1..10}} | 3*x - 4*y == 5);

print("x = x, y = y");

will print

x = 3, y = 1.

This example shows that the values of the variables x and y is available outside of the existentially
quantified expression. The execution of a forall or an exists statement stops as soon as the
truth value of the statement is known. This feature is quite useful if the actual value of the variable
in an exists statement is needed. It is also useful for a forall statement in case that the forall
statement fails. For example, the expression

forall (n in [1..10] | n**2 <= 2**n);

evaluates to false and, furthermore, it sets the value of the variable n to 3, as this is the first
integer in the list [1..10] where the expression n2 ≤ 2n is false.

2.3 Sets

The most interesting data type provided by SetlX is the set type. A set is a collection that
contains all of its elements exactly once. To create a simple set containing the numbers 1, 2, and
3, we can write

=> {1, 2, 3};
Note that the comparison

=> {1,2,3} == {2,3,1}
yields the result

Result: true

— 13 —

2.3. Sets Chapter 2. Whetting Your Appetite

since the order of elements in a set does not matter. This behaviour can lead to results that are
sometimes surprising for the novice. For example, the command

=> print({3,2,1});
yields the following output:

{1, 2, 3}
The reason is, that SetlX does not remember the ordering of elements in a set, it just remembers
the elements and sorts them internally to maximize the efficiency of looking up elements from a
set.

To check whether a set contains a given entity as an element, SetlX provides the binary infix
operator “in”. For example, the command

=> 2 in {1,2,3};
yields the result true, as 2 is indeed an element of the set {1, 2, 3}, while

=> 4 in {1,2,3};
returns false.

The data type of a set would be quite inconvenient to use if we could only create sets by ex-
plicitly listing all their elements. Fortunately, there are some more powerful expressions to create
sets. The most straightforward of them is the range operator that can create a set containing all
the integers in a given range. For example, to create the set containing the integers from 1 up to
16, we can write

=> {1..16};
This will give the result

Result: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}.
Here, we have used the range operator “..”. For given integers a and b such that a ≤ b, the
expression

{a..b}
will generate the set of all integers starting from a up to and including the number b. Mathemat-
ically, the semantics of this operator is given by the formula

{a..b} = {a + n | a ∈ N ∧ a + n ≤ b}.
If b is less than a, the expression

{a..b}
denotes the empty set {}.

While successive elements of a set created by the expression “{a..b}” differ by 1, there is a
variant of the range operator that allows us to specify the size of the difference between successive
elements. For example, the expression

=> {1,3..10};
yields

Result: {1, 3, 5, 7, 9}.
In general, when a set definition of the form

{a,b..c}
is evaluated, there are two cases.

— 14 —

Chapter 2. Whetting Your Appetite 2.3. Sets

1. a < b. In this case, the step size s is defined as

s := b − a.

Then, we have

{a,b..c} := {a + n · s | n ∈ N ∧ a + n · s ≤ c}.

2. a > b. In this case, the step size s is defined as

s := a − b.

Then, we have

{a,b..c} := {a + n · s | n ∈ N ∧ a + n · s ≥ c}.
For example, we have

{10, 8..1} = {10, 8, 6, 4, 2}.

2.3.1 Operators on Sets

The most basic operators on sets are as follows:

1. “+” is used to compute the union of two sets.

In mathematics, the union of two sets s1 and s2 is written as s1 ∪ s2. It is defined as

s1 ∪ s2 := {x | x ∈ s1 ∨ x ∈ s2}.

2. “*” computes the intersection of two sets.

In mathematics, the intersection of two sets s1 and s2 is written as s1 ∩ s2. It is defined as

s1 ∩ s2 := {x | x ∈ s1 ∧ x ∈ s2}.

3. “-” computes the difference of two sets.

In mathematics, the difference of two sets s1 and s2 is often written as s1\s2. It is defined
as

s1\s2 := {x ∈ s1 | x /∈}.

4. “><” computes the Cartesian product of two sets.

In mathematics, the Cartesian product of two sets s1 and s2 is written as s1 × s2. It is
defined as

s1 × s2 := {〈x1, x2〉 | x1 ∈ s1 ∧ x2 ∈ s2}.

5. “** 2” computes the Cartesian product of a set with itself, i.e. we have

s ∗∗ 2 := s × s.

6. “2 ** ” computes the power set of a given set. For a given set s, the power set of s is defined
as the set of all subsets of s. In mathematics, the power set of a given set s is written as s2

and the formal definition is

2s := {m | m ⊆ s}.
For example, the expression

2 ** {1,2,3}
yields the result

{{}, {1}, {1, 2}, {1, 2, 3}, {1, 3}, {2}, {2, 3}, {3}}.

— 15 —

2.3. Sets Chapter 2. Whetting Your Appetite

7. “%” computes the symmetric difference of sets.

In mathematics, the symmetric difference of two sets s1 and s2 is often written as s1△s2. It
is defined as

s1△s2 := (s1\s2) ∪ (s2\s1).

Therefore, the commands

s1 := { 1, 2 }; s2 := { 2, 3 };
print("s1 + s2 = $s1 + s2$");

print("s1 - s2 = $s1 - s2$");

print("s1 * s2 = $s1 * s2$");

print("s1 ** 2 = $s1 ** 2 $");

print("2 ** s2 = $2 ** s2$");

print("s1 >< s2 = $s1 >< s2$");

print("s1 % s2 = $s1 % s2$");

will produce the follwing results:

s1 + s2 = {1, 2, 3}

s1 - s2 = {1}

s1 * s2 = {2}

s1 ** 2 = {[1, 1], [1, 2], [2, 1], [2, 2]}

2 ** s2 = {{}, {1}, {1, 3}, {3}}

s1 >< s2 = {[1, 2], [1, 3], [2, 2], [2, 3]}

s1 % s2 = {1, 3}

For sets, the exponentiation operator “**” is only defined if either the base of the exponentiation
is a set and the exponent is the number 2 or the base is the number 2 and the exponent is a set.
Therefore, if s is a set, expressions like

3 ** s and s ** 3

are undefined. Also note the use of string interpolation in the examples given above: Inside
a string, any expression enclosed in $-symbols is evaluated and the result of this evaluation is
inserted into the string. Strings interpolation will be discussed in more detail in the section on
strings.

For all of the binary operators discussed above there is a variant of the assignment operator
that incorporates the binary operator. For example, we can write

s += {x};
to add the element x to the set s, while the command

s -= {x};
removes the element x from the set s. Of course, these modified assignment operators also work
for numbers.

In addition to the basic operators, SetlX provides a number of more elaborate operators
for sets. One of these operators is the cardinality operator “#”, which computes the number of
elements of a given set. The cardinality operator is used as a unary prefix operator, for example
we can write:

{5,7,13};
Of course, in this example the result will be 3. We can sum the elements of a set using the prefix
operator “+/”. For example, in order to compute the sum

— 16 —

Chapter 2. Whetting Your Appetite 2.3. Sets

6
2

∑

i=1

i,

we can create the set {1..6**2} containing all the numbers to sum and then use the command

+/ {1..6**2};
to calculate the actual sum. For arguments that are numbers, “**” is the exponentiation operator.
Therefore, the expression given above first computes the set of all numbers from 1 up to the number
36 and then returns the sum of all these numbers. There is also a binary version of the operator
“+/” that is used as an infix operator. For a number x and a set s, the expression

x +/ s

will insert x into the set s if the set s is empty. After that, it returns the sum of all elements in the
resulting set. This is usefull as the expression “+/ {}” is undefined. So if we want to compute the
sum of all numbers in s but we are not sure whether s might be empty, we can use the expression

0 +/ s

since inserting 0 into the empty set guarantees that the result is 0 in case the set s is empty.

There is a similar operator for multiplying the elements of a set: It is the operator “*/”. For
example, in order to compute the factorial3 n! = 1 · 2 · 3 · . . . · (n− 1) · n we can use the expression

*/ {1..n}.
Again, there is also a binary version of this operator. Since the number 1 is the neutral element
for multiplication, the first argument to this operator will most often we one. Therefore, the
expression

1 */ s

multiplies all the numbers from a the set s and this expression will return 1 if the set s happens
to be empty.

2.3.2 Set Comprehensions

We can use set comprehension to build sets. For example, the command

{ a * b : a in { 1 .. 3 }, b in { 1 .. 3 } };
computes the set of all products a ∗ b where both a and b run from 1 to 3. The command will
therefore compute the set

{1, 2, 3, 4, 6, 9}.
In general, a set comprehension expression has the form

{ expr : x1 in s1, · · ·, xn in sn | cond }.
Here, expr is some expression containing the variables x1, · · ·, xn, while s1, · · ·, sn are either
sets or lists (to be discussed later), and cond is an expression returning a Boolean value. The
set comprehension expression given above evaluates expr for all possible combinations of values
x1 ∈ s1, · · ·, xn ∈ sn such that cond is true and it will add the corresponding value of expr into
the resulting set. The expression cond is optional. If it is missing, it is implicitly taken to be
always true.

We are now ready to demonstrate some of the power that comes with sets. The following two
statements compute the set of all prime numbers smaller than 100:

3 The factorial operator “!” is a builtin postfix operator. Computing the factorial of a number using this

operator is more efficient than first building a set and then using the operator “*/”.

— 17 —

2.3. Sets Chapter 2. Whetting Your Appetite

s := {2..100};
s - { p * q : p in s, q in s };

The expression given above computes the set of prime numbers smaller than 100 correctly, as a
prime number is any number bigger than 1 that is not a proper product. Therefore, if we subtract
the set of all proper products from the set of numbers, we get the set of prime numbers. Obviously,
this is not an effcient way to calculate primes, but efficiency is not the point of this example. It
rather shows that SetlX is well suited to execute a mathematical definition as it is.

Let us look at another example of set comprehension: The expression

{ p:p in {2..100} | { t:t in {2..p-1} | p % t == 0 } == {} }
yields the set of all prime numbers less than 100. The subexpression

{ t:t in {2..p-1} | p % t == 0 }
computes the set of all those natural numbers bigger than 1 and less than p that divide p evenly.
If this set is empty, then, by the definition of a prime number, p is prime.

The syntax for building set comprehensions is a little bit more general than discussed above.
Provided s1, · · ·, sn are sets of lists, where all of the lists in the set si have the same length mi, a
set comprehension expression can take the form

{ expr : [x1, x2, · · · , xm1
] in s1, · · ·, [z1, z2, · · · , zmn

] in sn | cond }.
This kind of set comprehension expressions will be discussed further when discussing lists.

2.3.3 Miscellaneous Set Functions

In addition to the operators provided for sets, SetlX has a number of functions targeted at sets.
The first of these functions is arb. For a set s, an expression of the form

arb(s)

yields some element of the set s. The element returned is not specified, so the expression

arb({1,2,3});
might yield either 1, 2, or 3. The function from has a similar effect, so

from(s)

also returns some element of the set s. In addition, this element is removed from the set. Therefore,
if the set s is defined via

s := {1,2,3};
and we execute the statement

x := from(s);

then some element of s is assigned to x and this element is removed form the set the set s. For a
set s, the expression

first(s)

returns the first element of the set s, while

last(s)

yields the last element. Internally, sets are represented as ordered binary trees. As long as the sets
contain only numbers, the ordering of these numbers is the usual ordering on numbers. Therefore,
in this case the element is just the smalllest number and the last element is the biggest number.
If the sets contain sets (or lists), these sets (or lists) are themselves compared lexicographically.

— 18 —

Chapter 2. Whetting Your Appetite 2.4. Lists

Things get a little bit more complicated if a set is heterogenous and contains both number and
sets. Programs should not rely on the ordering implemented in these cases.

For a given set s, the expression

rnd(s)

yields a random element of the set s. In contrast to the expression “arb(s)”, this expression will
in general return different results on different invocations. The function rnd also works for lists,
so for a list l the expression rnd(l) returns a random element of l. The function rnd() is also
supported for integer numbers, for example the expression

rnd(5)

computes a random natural number less or equal than 5. Essentially it is equal to the expression
rnd({1..5}). While we are at it: The function random computes pseudo-random values in the
intervall [0, 1]. This function does not take an argument. Therefore, the expression

random()

might output a value like 0.5171688974345957.

2.4 Lists

Besides sets, SetlX also supports lists. Syntactically, the main difference is that the curly braces
“{” and “}” are substituted with the square brackets “[” and “]”. Semantically, a list is an
ordered collection of elements that can contain the same element multiple times. For example

[1,4,7,2,4,7]

is a typical list. The easiest way to construct a list is by defining the list explicitely. For example,
the assignment

l := [1,4,7,2,4,7]

defines the list [1,4,7,2,4,7] and assigns it to the variable l. Another way to construct lists is
via the range operator “..”: For example, the command

[1..10]

computes the list

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

The prefix operators “+/” and “*/” work for lists in the same way that they work for sets: “+/ l”
computes the sum of all elements of the list l, while “*/ l” computes the product of the elements
of l. For example, the expression

+/ [1..100]

yields the result 5050.

List comprehension works similar to set comprehension, the expression

[expr : x1 in s1, · · ·, xn in sn | cond]

picks up all tuples

〈x1, · · · , xn〉 ∈ s1 × · · · × sn

such that cond is true and evaluates expr for the corresponding values of the variables x1, · · ·, xn.
The value of expr is then inserted into the resulting list. Here, the si denote either sets or lists.
For example, the following expression computes all primes up to 100:

— 19 —

2.4. Lists Chapter 2. Whetting Your Appetite

[p : p in [2..100] | { x : x in {1..p} | p % x == 0 } == {1, p}].

Here, the idea is that a number p is prime if the set of its divisors, which is the set of all numbers
x such that p %x = 0, only contains the number 1 and the number p.

The syntax for building lists via comprehensions is a little bit more general than discussed
above. Provided s1, · · ·, sn are sets or lists, such that all of the elements of si are lists that have
the same length mi, a list can be defined as

[expr : [x1, x2, · · · , xm1
] in s1, · · ·, [z1, z2, · · · , zmn

] in sn | cond].

For example, assume that r1 and r2 are sets containing pairs of elements, where a pair is just a list
of length two. In this case, r1 and r2 could be viewed as binary relations. Then the composition

r1 ◦ r2 of r1 and r2 can be computed as

{ [x,z] : [x,y] in r1, [y,z] in r2 }.
There are two infix operators for lists: The first is the operator “+” which concatenates its argu-
ments. For example

[1 .. 3] + [5 .. 10];

yields

[1, 2, 3, 5, 6, 7, 8, 9, 10].

The second infix operator is “*”. While the first argument of this operator is a list, the second
needs to be an integer. An expression of the form

l * n

concatenates n copies of the list l. Therefore, the expression

[1, 2, 3] * 3

yields the result

[1, 2, 3, 1, 2, 3, 1, 2, 3].

The cardinality operator “#” works for lists the same way it works for sets: It returns the number
of elements. For example

[7, 4, 5];

yields the result 3.

As the elements of a list are ordered, it is possible to extract an element from a list with respect
to its position. In general, for a list l and a positive natural number n, the expression

l[n]

selects the n-th element of l. Here, counting starts with 1, so l[1] is the first element of the list l.
For example, after the assignment

l := [99, 88, 44];

the expression

l[2]

yields the result 88. The right hand side of an extraction expression can also be a slicing operator :
The expression

l[a..b]

extracts the sublist of l that starts at index a and ends at index b. For example, after defining l
via the assignment

— 20 —

http://en.wikipedia.org/wiki/Binary_relation

Chapter 2. Whetting Your Appetite 2.5. Pairs, Relations, and Functions

l := [1..100];

the expression

l[5..10]

yields the sublist [5, 6, 7, 8, 9, 10]. There are two variants of the slicing operator. The
expression

l[a..]

returns the sublist of l that starts with the element at index a, and the expression

l[..b]

computes the sublist of l that starts at the first element and includes all the elements up to the
element at index b.

Lists of variables can be used on the left hand side of an assigment. This feature enables the
simultaneous assignment of variables. The statement

[x,y] := [1,2];

sets the variable x to 1 and y to 2. A more interesting example is the following assigment:

[y,x] := [x,y];

This assigment swaps the values of x and y.

2.5 Pairs, Relations, and Functions

In Setl, a pair of the form 〈x, y〉 is represented as the list [x, y]. A set of pairs can be regarded as
a binary relation and the notion of a relation is a generalization of the notion of a function. If r is
a binary relation, we define the domain and range of r as the set containing the first and second
component of the pairs, that is we have

domain(r) = { x :[x,y] in r } and range(r) = { y :[x,y] in r }.
Furthermore, if r is a binary relation such that for all pairs such that

[x, y1] ∈ r and [x, y2] ∈ r

holds, we have that y1 = y2, then r is called a map and represents a function. Therefore, a map
is a set of [key, value] pairs such that the keys are unique. If a binary relation r is a map,
SetlX permits us to use the relation as a function: If r is a map and x ∈ domain(r), then r[x]
denotes the unique element y such that 〈x, y〉 ∈ r:

r[x] :=

{

y if the set {y | [x, y] ∈ r} contains exactly one element y;

Ω otherwise.

The program shown below in Figure 2.5 provides a trivial example demonstrating how maps can
be used as functions in SetlX.

1 r := { [n, n*n] : n in {1..10} };

2 print("r[3] = $r[3]$");

3 print("domain(r) = $domain(r)$");

4 print("range(r) = $range(r)$");

Figure 2.5: Binary relations as functions.

— 21 —

2.5. Pairs, Relations, and Functions Chapter 2. Whetting Your Appetite

The program computes the map r that represents the function x 7→ x ∗ x on the set

{n ∈ N | 1 ≤ n ∧ n ≤ 10}.
In line 3, the relation r is evaluated at x = 3. This is done using square brackets. Finally,
domain(r) and range(r) are computed. We get the following result:

r[3] = 9

domain(r) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

range(r) = {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

It is a natural question to ask what happens if r is a binary relation and we try to evaluate
the expression r(x) but the set { y : [x, y] in r } is either empty or contains more than one
element. The program shown in figure 2.6 on page 22 answers this question.

1 r := { [1, 1], [1, 4], [3, 3] };

2 print("r[1] = ", r[1]);

3 print("r[2] = ", r[2]);

4 print("{ r[1], r[2] } = ", { r[1], r[2] });

5 print("r{1} = ", r{1});

6 print("r{2} = ", r{2});

Figure 2.6: A binary relation that is not a map.

If the set { y :[x, y] in r } is either empty or has more than one element, then the ex-
pression r[x] is undefined. In mathematics, an undefined value is sometimes denoted as Ω. In
SetlX, the undefined value is printed as “om”. If we try to add the undefined value to a set m,
then m is not changed. Therefore, line 5 of the program just prints the empty set, as both r[1]

and r[2] are undefined.

We can use the notation r{x} instead of r[x] to avoid undefined values. For a binary relation
r and an object x, the expression r{x} is defined as follows:

r{x} := { y :[x, y] in r }.
Therefore, the program from Figure 2.6 yields the following results:

r[1] = om

r[2] = om

{ r[1], r[2] } = {}

r{1} = {1, 4}

r{2} = {}

Remark: This section has shown that binary relations can be used to represent the data type of
a dictionary. Other programming languages, for example Perl [WS92], provide associative arrays

to represent dictionaries. In most of the scripting languages providing associative arrays, these
associative arrays are implemented as hash tables . In the programming language Setl, sets and
relations were also represented via hash tables. In contrast, the sets (and therefore the dictionaries)
in SetlX are implemented as red-black trees. Although implementing sets as red-black trees is
slightly slower than a hash table based implementation, the advantage of using red-black trees
is that they support a number of operations that are not available when using hash-tables. The
efficient implementation of the functions first and last would be impossible if sets had been
represented as hash tables.

— 22 —

http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Red-black_tree

Chapter 2. Whetting Your Appetite 2.6. Procedures

2.6 Procedures

Although functions can be represented as binary relations, this is not the preferred way to represent
functions. After all, using a relation to represent a function has a big memory footprint and
also requires to compute all possible function values regardless of their later use. Therefore, the
preferred way to code a function is to use a procedure. For example, Figure 2.7 defines a procedure
to compute all prime numbers up to a given natural number n. The idea is to take the set s of
all numbers in the range from 2 upto n and then to subtract the set of all non-trivial products
from this set. This will leave us with the set of all prime numbers less or equal to n as a natural
number is prime if and only if it is not a non-trivial product.

1 primes := procedure(n) {

2 s := { 2..n };

3 return s - { p*q : [p, q] in s >< s };

4 };

Figure 2.7: A procedure to compute the prime numbers.

In Figure 2.7, the block starting with “procedure {” and ending with the closing brace “}”
defines a function. This function is then assigned to the variable primes. Therefore, a function
is just another kind of a value. Conceptually, the type of functions is not different from the type
of sets or strings: A function can be assigned to a variable, it can be used as an argument to
another function and it can also be returned from another function. To summarize, functions
are first class citizens in SetlX. The ramifications of this fact will be explained in Chapter 5 on
functional programming and closures.

2.7 Strings

Any sequence of characters enclosed in double quotes is considered a string. Strings can be
concatenated using the infix operator “+”, so

"abc" + "xyz"

yields the string "abcxyz" as a result. In order to concatenate multiple instances of the same
string, we can use the infix operator “*”. For a string s and a natural number n, the expression

s * n

returns a string that consists of n copies of the string s. For example, the expression

"abc" * 3

yields the result

"abcabcabc".

This also works when the position of the string and the number are exchanged. Therefore,

3 * "abc"

also yields "abcabcabc".

In order to extract the i-th character of the string s, we can use the expression

s[i].

The slicing operators work similar to lists, for example, if s has the value "abcdef", then

— 23 —

http://en.wikipedia.org/wiki/First-class_function

2.7. Strings Chapter 2. Whetting Your Appetite

s[2..5];

yields the result "bcde", while

s[2..];

yields "bcdef" and

s[..5];

gives "abcde".

SetlX provides string interpolation: If a string contains a substring enclosed in “$”-symbols,
then SetlX parses this substring as an expression, evaluates this expression, and then substitutes
the result into the string. For example, if the variable n has the value 6, the command

print("n! = $n!$");

will print

6! = 720.

In order to insert a literal “$”-symbol into a string, the “$”-symbol has to be escaped with a
backslash. For example, the command

print("a single \$-symbol");

prints the text

a single $-symbol.

String interpolation is turned off by the prefix operator “@”: The command

print(@"n! = $n!$");

prints

n! = $n!$.

2.7.1 Literal Strings

Sometimes it is necessary to turn off any kind of preprocessing when using a string. This is
achieved by enclosing the content of the string in single quotes. These strings are known as literal

strings. For example, after the assignment

s := ’\n’;

the string s contains exactly two characters: The first character is the backslash “\”, while the
second character is the character “n”. If instead we write

s := "\n";

then the string s contains just one character, which is the newline character. SetlX supports the
same escape sequences as the language C.

As we have just seen, there is no replacement of escape sequences in a literal string. There is
no string interpolation either. Therefore, the statement

print(’$1+2$’);

prints the string “$1+2$”, where we have added the opening and closing quotes to delimit the
string, they are not part of the string. Later, literal strings will come in very handy when dealing
with regular expressions.

Remark: It should be noted that SetlX does not have a special data type to support single
characters. The reason is that in SetlX single characters are represented as strings of length one.

— 24 —

Chapter 2. Whetting Your Appetite 2.8. Terms

2.8 Terms

SetlX provides first order terms similar to the terms available in the programming language
Prolog [SS94]. Terms are built from functors and arguments. To distinguish functors from func-
tion symbols, a functor will start with a capital letter. For example, the expression

F(1,"x")

is a term with functor F and two arguments. Here, the functor is just a name, it is not a
function that can be evaluated. To demonstrate the usefulness of terms, consider implement-
ing ordered binary trees in SetlX. There are two types of ordered binary tress:

1. The empty tree represents the empty set. We use the functor Nil to represent an empty
binary tree, so the term

Nil()

codes the empty tree.

2. A non-empty binary tree has three components:

(a) The root node,

(b) the left subtree, and

(c) the right subtree.

The root node stores one element k and all elements in the left subtree l have to be less than
k, while all elements in the right subtree are bigger than k. Therefore, a non-empty binary
tree can be represented as the term

Node(k, l, r),

where k is the element stored at the root, l is the left subtree and r is the right subtree.

For example, the term

Node(2,Node(1,Nil(),Nil), Node(3,Nil(), Nil()))

is a typical binary tree. At the root, this tree stores the element 2, the left subtree stores the
element 1 and the right subtree stores the element 3.

There are two functions to decompose a term and there is one function that constructs a term.

1. If t is a term, then the expression

fct(t)

returns the functor of the term t as a string. For example, the expression

fct(Node(3,Nil(),Nil()))

yields the result "Node".

2. If t is a term, then the expression

args(t)

returns the list of arguments of the term t. For example, the expression

args(Node(3,Nil(),Nil()))

yields the result

[3, Nil(), Nil()].

— 25 —

http://en.wikipedia.org/wiki/Term_(first-order_logic)#Terms
http://en.wikipedia.org/wiki/Prolog
http://en.wikipedia.org/wiki/Binary_search_tree

2.8. Terms Chapter 2. Whetting Your Appetite

3. The function makeTerm(f, l) constructs a term t such that

fct(t) = f and args(t) = l

holds. For example,

makeTerm("Node", [makeTerm("Nil",[]), makeTerm("Nil",[])])

constructs the term

Node(3,Nil(),Nil()).

Of course, this term can also be given directly as an expression. For example, the statement

a := Node(3,Nil(),Nil());

assigns the term Node(3,Nil(),Nil()) to the variable a.

1 insert := procedure(m, k1) {

2 switch {

3 case fct(m) == "Nil" :

4 return Node(k1, Nil(), Nil());

5 case fct(m) == "Node":

6 [k2, l, r] := args(m);

7 if (k1 == k2) {

8 return Node(k1, l, r);

9 } else if (compare(k1, k2) < 0) {

10 return Node(k2, insert(l, k1), r);

11 } else {

12 return Node(k2, l, insert(r, k1));

13 }

14 }

15 };

Figure 2.8: Inserting an element into a binary tree.

Figure 2.8 shows how terms can be used to implement binary trees. In this example, we define
a function with the name insert. This function takes two arguments. The first argument m is
supposed to be a term representing an ordered binary tree. The second argument k1 denotes the
element that is to be inserted into the binary tree m. The implementation needs to distinguish two
cases:

1. If the binary tree m is empty, then the function returns the tree

Node(k1, Nil(), Nil()).

This is a binary tree containing the number k1 at its root, while both subtrees are empty.
In order to check whether m is indeed empty we use the functor of the term m. We test in
line 3 whether this functor is "Nil".

2. If the binary tree m is nonempty, the functor of m is "Node". In this case, we need to extract
the arguments of this functor, which is done in line 6: The first argument k2 is the element
stored at the root, while the arguments l and r correspond to the left and the right subtree
of m respectively. The predefined function compare is used to compare the element k1 that
is to be inserted into the tree with the element k2, which is the element at the root of the
tree.

— 26 —

Chapter 2. Whetting Your Appetite 2.8. Terms

The expression compare(k1, k2) returns −1 if k1 is less than k2, it returns +1 is k1 is greater
than k2, and it returns 0 if k1 and k2 are the same. The function compare is implemented
all data types.

This example uses a number of features of SetlX that have not been introduced. The discussion
of the switch construct will be given in the next chapter.

Sometimes, the fact that a functor has to be written in uppercase is inconvenient. For these
cases, there is an escape mechanism: If the functor of a term is preceded be the symbol “@”, then
it may start with a lowercase letter. For example, if we want to have terms representing algebraic
expressions involving trancendental functions, we could use the same function names that are also
used in SetlX to denote the corresponding trancendental functions. For example, we can write

t := @exp(@log(@x));

to represent the term

exp(log(x)).

The present discussion of terms is not complete and will be continued in the next chapter when
we discuss matching.

— 27 —

Chapter 3

Statements

This section discusses the various possibilities to write statements and the features offered by
SetlX to steer the control flow in a program. SetlX supports the follwing means to control the
order of statement execution:

1. branching statements like if-then-else, switch, and match,

2. the looping statements for and while together with break and continue,

3. try-catch statements to deal with exceptions,

4. the backtrack statement to support backtracking.

3.1 Assignment Statements

The most basic command is the assignment. In contrast to the programming languages C and
Java, SetlX uses the operator “:=” for assignments. For example, the statement

x := 2/3;

binds the variable x to the fraction 2

3
. SetlX supports simultaneous assignments to multiple

variables via lists. For example, the statement

[x, y, z] := [1, 2, 3];

simultaneously binds the variables x to 1, y to 2 and z to 3. This feature can be used to swap the
values of two variables: The statement

[x, y] := [y, x];

swaps the values of x and y. If we do not need to assign all the values of a list, we can use the
underscore “ ” as an anonymous variable. For example,

[x, , z] := [1, 2, 3];

assigns the number 1 to the variable x and the variable z is is set to 3.
The assignment operator can be combined with any of the operators “+”, “-”, “*”, “/”, “%”,

and “\”. For example, the statement

x += 1;

increments the value of the variable x by one, while the statement

x *= 2;

doubles the value of x. Finally, assignment statements can be chained. For example, the statement

— 28 —

Chapter 3. Statements 3.2. Functions

a := b := 3;

assigns the value 3 to both a and b.

3.2 Functions

The code shown in figure 3.1 on page 29 shows a simple program to compute prime numbers. It
defines two functions. The function factors takes a natural number p as its first argument and
computes the set of all factors of p. Here, a number f is a factor of p iff dividing p by f leaves
no remainder, that is p % f = 0. The second function primes takes a natural number n as an
argument and computes the set of all those prime numbers that are less or equal to n.

The idea is that a number p is prime iff the set of all factors of p contains just 1 and p. Note
that, as SetlX is a functional language, the functions that are defined by the keyword procedure

are assigned to variables. As already mentioned n the previous chapter, these functions can be
used like any other values.

1 factors := procedure(p) {

2 return { f in { 1 .. p } | p % f == 0 };

3 };

4 primes := procedure(n) {

5 return { p in { 2 .. n } | factors(p) == { 1, p } };

6 };

7 print(primes(100));

Figure 3.1: A naive program to compute primes.

A simplified grammar rule for the definition of a function can be given as follows:

fctDef → VAR “:=” “procedure” “(” paramList “)” “{” block “}” “;”

The meaning of the symbols used in this grammar rule are as follows:

1. VAR identifies a variable. This variable is bound to the definition of the function. Note that
in SetlX the name of a variable has to start with a lower case letter.

2. paramList is a list of the formal parameters of the function. In Ebnf-notation the grammar
rule for paramList is given as

paramList → (paramSpec (“,” paramSpec)∗)?

Therefore, a paramList is a possibly empty list of parameter specifications that are separated
by a comma “,”. A parameter specification is either just a variable or it is a variable preceded
by the token “rw”:

paramSpec → (ID | “rw” ID).

If the parameter is preceded by the keyword rw, then this parameter is a read-write parameter,
which means that the function can change the value of the variable given as argument and
this change will then be visible outside of the function. Therefore, parameters prefixed
with the keyword rw have a call by name semantics. Parameters not specified as read-write
parameters have a strict call by value semantics, and therefore changes to those parameters
will not be visible outside the function.

3. block is a sequence of statements.

— 29 —

http://en.wikipedia.org/wiki/Call_by_name#Call_by_name
http://en.wikipedia.org/wiki/Call_by_value#Call_by_value

3.2. Functions Chapter 3. Statements

Note that the definition of a function has to be terminated by the symbol “;”.

There is a variant syntax for definining function which is appropriate if the definition of the
function is just a single expression. For example, the function mapping x to the square x ∗ x can
be defined as

f := x |-> x * x;

A definition of this form is called a lambda definition. If the function takes more than one argu-
ments, the argument list has to be enclosed in square brackets. For example, the function hyp

that computes the hypotenuse of a rectangular triangle can be defined as follows:

hyp := [x, y] |-> sqrt(x*x + y*y);

The syntax for a lambda definition is given by the follwing grammar rule:

fctDef → ID “:=” lambdaParams “|->” expr “;”

Here, lambdaParams is either just a single parameter or a list of parameters, where the parameters
are enclosed in square brackets and are separated by commas, while expr denotes an expression.

Lambda definitions are handy if we don’t bother to give a name to a function. For example, the
code in figure 3.2 defines a function map. This function takes two arguments: The first argument
l is a list and the second argument f is a function that is to be applied to all arguments of this
list. In line 4, the function map is called with a function that squares its argument. Therefore,
the assignment in line 4 computes the list of the first 10 square numbers. Note that we did not
had to name the function that did the squaring. Instead, we have used a lambda definition.

1 map := procedure(l, f) {

2 return [f(x) : x in l];

3 };

4 t := map([1 .. 10], x |-> x * x);

Figure 3.2: An example of a lambda definition in use.

Of course, it is much easier to build the list of the first 10 squares using the statement

t := [x*x : x in [1..10]];

3.2.1 Memoization

The function fib : N → N computing the Fibonacci numbers is defined recursivly by the following
set of recurrence equations:

fib(0) = 0, fib(1) = 1, and fib(n + 2) = fib(n + 1) + fib(n).

These equations are readily implemented as shown in Figure 3.3. However, this implementation
has a performance problem which can be easily seen when tracing the computation of fib(4).

In order to trace the computation, we change the program as shown in Figure 3.4. If we evaluate
the expression fibonacci(4), we get the output shown in Figure 3.5. This output shows that
the expression fibonacci(2) is evaluated twice. The reason is that the value of fibonacci(2) is
needed in the equation

fibonacci(4) := fibonacci(3) + fibonacci(2)

to compute fibonacci(4), but then in order to compute fibonacci(3), we have to compute
fibonacci(2) again. The trace also shows that the problem gets aggravated the longer the
computation runs. For example, the value of fibonacci(1) has to be computed three times.

— 30 —

http://en.wikipedia.org/wiki/Fibonacci_numbers

Chapter 3. Statements 3.2. Functions

1 fibonacci := procedure(n) {

2 if (n in [0,1]) {

3 return n;

4 }

5 return fibonacci(n-1) + fibonacci(n-2);

6 };

Figure 3.3: A naive implementation of the Fibonacci function.

1 fibonacci := procedure(n) {

2 if (n in [0,1]) {

3 result := n;

4 } else {

5 result := fibonacci(n-1) + fibonacci(n-2);

6 }

7 print("fibonacci(n) = $result$");

8 return result;

9 };

Figure 3.4: Tracing the computation of the Fibonacci function.

=> fibonacci(4);

fibonacci(1) = 1

fibonacci(0) = 0

fibonacci(2) = 1

fibonacci(1) = 1

fibonacci(3) = 2

fibonacci(1) = 1

fibonacci(0) = 0

fibonacci(2) = 1

fibonacci(4) = 3

~< Result: 3 >~

=>

Figure 3.5: Output of evaluating the expression fibonacci(4).

In order to have a more efficient computation, it is necessary to memorize the values of the
function fibonacci once they are computed. Fortunately, SetlX offers cached functions. If a
function f is declared as a cached function, then every time the function f is evaluated for an
argument x, the computed value f(x) is memorized and stored in a table. The next time the
function f is used to compute f(x), the interpreter first checks whether the value of f(x) has
already been computed. In this case, instead of computing f(x) again, the function returns the
value stored in the table. This technique is known as memoization . Fortunately, memoization is
directly supported in SetlX via cached functions. Figure 3.6 shows an implementation of the
Fibonacci function as a cached function. If we compare the program in Figure 3.6 with our first

— 31 —

http://en.wikipedia.org/wiki/Memoization

3.3. Branching Statements Chapter 3. Statements

attempt shown in Figure 3.3, then we see that the only difference is that instead of the keyword
“procedure” we have used the keyword “cachedProcedure” instead.

1 fibonacci := cachedProcedure(n) {

2 if (n in [0,1]) {

3 return n;

4 }

5 return fibonacci(n-1) + fibonacci(n-2);

6 };

Figure 3.6: A cached implementation of the Fibonacci function.

Warning: A function should only be declared as a cachedProcedure if it is guaranteed to always
produce the same result when called with the same argument. Therefore, a function should not
be declared as a cachedProcedure if it does one of the following things:

1. The function makes use of random numbers.

2. The function reads input either from a file or from the command line.

To further support cached procedures, SetlX provides the function cacheStats, which is called
with a single argument that must be a cached function. For example, if we define the function
fibonacci as shown in Figure 3.6 and evaluate the expression fibonacci(100), then the expres-
sion cacheStats(fib) gives the following result:

~< Result: ["cache hits", 98], ["cached items", 101] >~

This tells us that the cache contains 101 different argument/value pairs, as the cache now stores
the values

fibonacci(n) for all n ∈ {0, · · · , 100}.
Furthermore, we see that 98 of these 101 argument/value pairs have been used more than once
in order to compute the values of fibonacci for different arguments. The reason is that the
values for the last three arguments 99, 100, and 101 have not yet been used for the computation
of different values, but all other arguments have been used at least once for computing another
value.

In order to prevent memory leaks, SetlX provides the function clearCache. This function is
invoked with one argument which must be a cached function. Writing

clearCache(f)

clears the cache for the function f , that is all argument/value pairs stored for f will be removed
from the cache.

3.3 Branching Statements

Like most modern languages, SetlX supports if-then-else statements and switch statements.
A generalization of switch statements, the so called match statements, are also supported. We
begin our discussion with if-then-else statements.

3.3.1 if-then-else Statements

In order to support branching, SetlX supports if-then-else statements. The syntax is similar
to the corresponding syntax in the programming language C. However, braces are required. For

— 32 —

Chapter 3. Statements 3.3. Branching Statements

example, figure 3.7 on page 33 shows a recursive function that computes the binary representation
of a natural number. Here, the function str converts its argument into a string while the function
floor(x) computes the largest natural number that is less or equal to its argument x.

1 toBin := procedure(n) {

2 if (n < 2) {

3 return str(n);

4 } else {

5 r := n % 2;

6 n := floor(n / 2);

7 return toBin(n) + toBin(r);

8 }

9 };

Figure 3.7: A function to compute the binary representation of a natural number.

As in the programming languages C and Java, the else clause is optional.

3.3.2 switch Statements

Figure 3.8 shows a function that takes a list of length 3. The function sorts the resulting list.
In effect, the function sort3 implements a decision tree. This example shows how if-then-else

statements can be cascaded.

1 sort3 := procedure(l) {

2 [x, y, z] := l;

3 if (x <= y) {

4 if (y <= z) {

5 return [x, y, z];

6 } else if (x <= z) {

7 return [x, z, y];

8 } else {

9 return [z, x, y];

10 }

11 } else if (z <= y) {

12 return [z, y, x];

13 } else if (x <= z) {

14 return [y, x, z];

15 } else {

16 return [y, z, x];

17 }

18 };

Figure 3.8: A function to sort a list of three elements.

Figure 3.9 on page 34 shows an equivalent program that uses a switch statement instead of an
if-then-else statement to sort a list of three elements. Although this implementation is easier
to understand, it is less efficient than the previous version. The reason is that some of the tests
are redundant. This is most obvious for the last case in line 9 since at the time when control

— 33 —

http://en.wikipedia.org/wiki/Decision_tree

3.4. Matching Chapter 3. Statements

arrives in line 9 it is already known that z must be less or equal than y and that, furthermore, y
must be less or equal than x, since all other cases are already covered.

1 sort3 := procedure(l) {

2 [x, y, z] := l;

3 switch {

4 case x <= y && y <= z: return [x, y, z];

5 case x <= z && z <= y: return [x, z, y];

6 case y <= x && x <= z: return [y, x, z];

7 case y <= z && z <= x: return [y, z, x];

8 case z <= x && x <= y: return [z, x, y];

9 case z <= y && y <= x: return [z, y, x];

10 default: print("Impossible error occurred!");

11 }

12 };

Figure 3.9: Sorting a list of 3 elements using a switch statement.

The grammar rule describing the syntax of switch statements is as follows:

stmnt → “switch” “{” caseList “}”
where the syntactical variable caseList is defined via the rule:

caseList → (“case” boolExpr “:” block)∗(“default” “:” block)?

Here, boolExpr is a boolean expression and block represents a sequence of statements.
In contrast to the programming languages C and Java, the switch statement in SetlX doesn’t

have a fall through. Therefore, we don’t need a break statement in the block of statements fol-
lowing a case condition. There are two other important distinction between the switch statement
in Java and the switch statement in SetlX:

1. In SetlX, the keyword switch is not followed by a value and

2. the conditions following the keyword case have to be Boolean values.

There is a another type of switching statements that is much more powerful than the switch

statement. This is called matching and will be discussed in the next section.

3.4 Matching

One of the most powerful branching construct is matching. Although the syntax for the matching
statement is always the same, there are really four different variants of matching for each of the
data types that support matching. Matching has been implemented for the data types strings,
lists, sets, and terms. We discuss string matching first.

3.4.1 String Matching

Many algorithms that deal with a given string s have to deal with two cases: Either the string s is
empty or it is nonempty and has to be split into its first character c and the remaning characters
r, that is we have

s = c + r where c = s[1] and r = s[2..].

In order to facilitate algorithms that have to make this kind of case distinction, SetlX provides

— 34 —

Chapter 3. Statements 3.4. Matching

the match statement. Consider the function1 reverse shown in Figure 3.10. This function reverses
its input argument, so the expression

reverse("abc")

yields the result "cba". In order to reverse a string s, the function has to deal with two cases:

1. The string s is empty. In this case, we can just return the string s as it is. This case is dealt
with in line 3. There, we have used the pattern “[]” to match the empty string. Instead, we
could have used the empty string itself. Using the pattern “[]” will prove beneficial when
dealing with lists because it turns out that the function reverse as given in Figure 3.10 can
also be used to reverse a list.

2. If the string s is not empty, then it can be split up into a first character c and the remaining
characters r. In this case, we reverse the string r and append the character c to the end of
this string. This case is dealt with in line 4.

The match statement in function reverse has a default case in line 5 to deal with those cases
where s is neither a string nor a list.

1 reverse := procedure(s) {

2 match (s) {

3 case [] : return s;

4 case [c|r]: return reverse(r) + c;

5 default : abort("type error in reverse(s)");

6 }

7 };

Figure 3.10: A function that reverses a string.

The last example shows that the syntax for the match statement is similar to the syntax for the
switch statement. The main difference is that the keyword is now “match” instead of “switch”
and that the cases no longer contain Boolean values but instead contain patterns that can be used

• to check whether a string has a given form and

• to extract certain components (like the first character or everything but the first character).

Basically, for strings the function reverse given above is interpreted as if it had been written in
the way shown in Figure 3.11 on page 36. This example shows that the use of the match statement
can make programs more compact while increasing their legibility.

To explore string matching further, consider a function reversePairs that interchanges all
pairs of characters, so for example we have

reversePairs("abcd") = "badc" and reversePairs("abcde") = "badce".

This function can be implemented as shown in Figure 3.12 on page 36. Notice that we can match
the empty string with the pattern “[]” in line 3. The pattern “[c]” matches a string consisting
of a single character c. In line 5 the pattern [a,b|r] extracts the first two characters from the
string s and binds them to the variables a and b. The rest of the string is bound to r.

1 There is also a predefined version of the function reverse which does exactly the same thing as the function

in Figure 3.10. However, once we define the function reverse as in Figure 3.10, the predefined function gets

overwritten and is no longer accessible.

— 35 —

3.4. Matching Chapter 3. Statements

1 reverse := procedure(s) {

2 if (s == "") {

3 return s;

4 } else if (isString(s)) {

5 c := s[1];

6 r := s[2..];

7 return reverse(r) + c;

8 } else {

9 abort("type error in reverse(s)");

10 }

11 };

Figure 3.11: A function to reverse a string that does not use matching.

1 reversePairs := procedure(s) {

2 match (s) {

3 case [] : return s;

4 case [c] : return c;

5 case [a,b|r]: return b + a + reversePairs(r);

6

7 }

8 };

Figure 3.12: A function to exchange pairs of characters.

String Decomposition via Assignment

Assignment can be used to decompose a string into its constituent characters. For example, if s
is defined as

s := "abc";

then after the assignment

[u, v, w] := s;

the variables u, v, and w have the values

u = "a", v = "b", and w = "c".

Therefore, for strings, list assignment can be seen as a lightweight alternative to matching.

3.4.2 List Matching

As strings can be regarded as lists of characters, the matching of lists is very similar to the
matching of strings. The function reverse shown in Figure 3.10 can also be used to reverse a
list. If the argument s of reverse is a list instead of a string, we match the empty list with the
pattern “[]”, while the pattern “[c|r]” matches a non-empty list: The variable c matches the
first element of the list, while the variable r matches the remaining elements.

List assignment is another way to decompose a list that is akin to matching. If the list l is
defined via

l := [1..3];

— 36 —

Chapter 3. Statements 3.4. Matching

then after the assignment

[x, y, z] := l;

the variables x, y, and y have the values x = 1, y = 2, and z = 3.

3.4.3 Set Matching

As sets are quite similar to lists, the matching of sets is closely related to the matching of lists.
Figure 3.13 shows the function setSort that takes a set of numbers as its argument and returns
a sorted list containing the numbers appearing in the set. In the match statement, we match
the empty set with the pattern “{}”, while the pattern “{x|r}” matches a non-empty set: The
variable x matches the first element of the set, while the variable r matches the set of all the
remaining elements.

1 setSort := procedure(s) {

2 match (s) {

3 case {} : return [];

4 case {x|r}: return [x] + setSort(r);

5 }

6 };

Figure 3.13: A function to sort a set of numbers.

Of course, sorting a set into a list is trivial, as a set in SetlX is represented by an ordered
binary tree and therefore is already sorted. For this reason, we could also transform a set s into
a sorted list by using the expression

[] + s.

In general, for a list l and a set s the exression l + s creates a new list containing all elements
of l. Then, the elements of s are appended to this list. The expression s + l creates a new set
containing the elements of s. Then, the elements of l are inserted into this set.

3.4.4 Term Matching

The most elaborate form of matching is the matching of terms. This kind of matching is similar
to the kind of matching provided in the programming languages Prolog and Ml [MTH90]. Figure
3.14 shows an implementation of the function insert to insert a number into an ordered binary
tree. This implementation uses term matching instead of the functions “fct” and “args” that
had been used in the previous implementation shown in Figure 2.8 on page 26. In line 3 of Figure
3.14, the case statement checks whether m is the empty tree. This is more straightforward than
testing that the functor of m is “Nil”, as it is done in line 3 of Figure 2.8. However, the real
benefit of matching shows in line 5 of Figure 3.14 since the case statement in this line does not
only check whether the functor of m is “Node” but also assigns the variables k2, l, and r to the
respective subterms of m. Compare this with line 5 and line 6 of Figure 2.8 where we had to use
a separate statement in line 6 to extract the arguments of m.

Let us discuss a more complex example of matching. The function diff shown in Figure 3.15
on page 38 is supposed to be called with two arguments:

1. The first argument t is a term that is interpreted as an arithmetic expression.

2. The second argument x is a string that is interpreted as the name of a variable.

— 37 —

http://en.wikipedia.org/wiki/Prolog
http://en.wikipedia.org/wiki/ML_(programming_language)

3.4. Matching Chapter 3. Statements

1 insert := procedure(m, k1) {

2 match (m) {

3 case Nil() :

4 return Node(k1, Nil(), Nil());

5 case Node(k2, l, r):

6 if (k1 == k2) {

7 return Node(k1, l, r);

8 } else if (compare(k1, k2) < 0) {

9 return Node(k2, insert(l, k1), r);

10 } else {

11 return Node(k2, l, insert(r, k1));

12 }

13 default: abort("Error in insert(m, $k1$, $v1$)");

14 }

15 };

Figure 3.14: Inserting an element into a binary tree using matching.

1 diff := procedure(t, x) {

2 match (t) {

3 case t1 + t2 :

4 return diff(t1, x) + diff(t2, x);

5 case t1 - t2 :

6 return diff(t1, x) - diff(t2, x);

7 case t1 * t2 :

8 return diff(t1, x) * t2 + t1 * diff(t2, x);

9 case t1 / t2 :

10 return (diff(t1, x) * t2 - t1 * diff(t2, x)) / t2 * t2;

11 case f ** g :

12 return diff(@exp(g * @ln(f)), x);

13 case ln(a) :

14 return diff(a, x) / a;

15 case exp(a) :

16 return diff(a, x) * @exp(a);

17 case ^variable(x) : // x is defined above as second argument

18 return 1;

19 case ^variable(y) : // y is undefined, matches any other variable

20 return 0;

21 case n | isNumber(n):

22 return 0;

23 }

24 };

Figure 3.15: A function to perform symbolic differentiation.

The function diff interprets the term t as a mathematical function and differentiates this function
with respect to the variable x. For example, in order to compute the derivative of the function

x 7→ xx

— 38 —

Chapter 3. Statements 3.4. Matching

we can invoke diff as follows:

diff(parse("x ** x"), "x");

Here the function parse transforms the string “x ** x” into a term. The form of this term will
be discussed in more detail later. For the moment, let us focus on the match statement in Figure
3.15. Consider line 3: If the term that is to be differentiated has the form t1 + t2, then both t1

and t2 have to be differentiated separately and the resulting terms have to be added. For a more
interesting example, consider line 8. This line implements the product rule:

d
dx

(

t1 · t2
)

= d t1
dx

· t2 + t1 · d t2
dx

.

Note how the pattern

t1 * t2

in line 7 extracts the two factors from a term that is a product. Further, note that in line 12 and
line 16 we had to prefix the function symbols “exp” and “ln” with the character “@” in order to
convert these function symbols into functors.

In order to understand this example in Figure 3.15 in more detail, we have to discuss how the
function parse converts a string into a term. The function parse needs to represent all operator
symbols and it also needs to represent variables. A variable of the form "x" is parsed as a term
of the form

^variable("x").

This should explain the patterns used in line 19 and line 21 of Figure 3.15. In order to inspect
the internal representation of a term, we can use the function “canonical”. For example, the
expression

canonical(parse("x ** x"))

yields the result

^power(^variable("x"), ^variable("x")).

This shows that the functor “^power” is the internal representation of the power operator “**”.
The internal representation of “+” is “^sum”, “-” is represented as “^difference”, “*” is repre-
sented as “^product”, and “/” is represented as “^quotient”.

Note that the example makes extensive use of the fact that terms are viral when used with
the arithmetic operators “+”, “-”, “*”, “/”, “\”, and “%”: If one operand of these operators is a
term, the operator automatically yields a term. For example, the expression

parse("x") + 2

yields the term

^sum(^variable("x"), 2).

Note also that terms are not viral inside function symbols like “exp”. Therefore, this function
symbol has to be prefixed by the operator “@” to turn it into a functor.

Line 21 shows how a condition can be attached to a pattern: The pattern

case n:

would match anything. However, we want to match only numbers here. Therefore, we have used
the pattern

case n | isNumber(n):

in order to ensure that n is indeed a number.

— 39 —

3.5. Loops Chapter 3. Statements

3.4.5 Term Decomposition via List Assignment

Similar to strings, terms can be decomposed via list assignment. For example, after the assignment

[x,y,z] := F(1, G(2), {2,3});
the variables x, y, and z have the values

x = 1, y = G(2), and z = {2, 3}.
Of course, the function args achieves a similar effect. We have that

args(F(1, G(2), {2,3})) = [1, G(2), {2, 3}].

3.5 Loops

SetlX offers three different kinds of loops: for loops, while loops, and do-while loops. The
while loops are the most general loops. Therefore, we discuss them first.

3.5.1 while Loops

The syntax and semantics of while loops in SetlX is really the same as in the programming lan-
guage C. To demonstrate a while loop, let us implement a function testing the Collatz conjecture:
Define the function

f : N → N

recursively as follows:

1. f(n) := 1 if n ≤ 1,

2. f(n) :=

{

f(n/2) if n % 2 = 0;

f(3 · n + 1) otherwise.

The Collatz conjecture claims that f(n) = 1 for all n ∈ N. If we assume the Collatz conjecture is
true, then f is well-defined. Otherwise, if the Collatz conjecture is not true, for certain values of n
the function f(n) is undefined. Figure 3.16 shows an implementation of the function f in SetlX.

1 f := procedure(n) {

2 if (n == 0) {

3 return 1;

4 }

5 while (n != 1) {

6 if (n % 2 == 0) {

7 n /= 2;

8 } else {

9 n := 3 * n + 1;

10 }

11 }

12 return n;

13 };

Figure 3.16: A program to test the Collatz conjecture.

— 40 —

http://en.wikipedia.org/wiki/Collatz_conjecture

Chapter 3. Statements 3.5. Loops

The function f is implemented via a while loop. This loop runs as long as n is different
from the number one. Therefore, if the Collatz conjecture is true, the while loop will eventually
terminate for all values of n.

The syntax of a while loop is given by the following grammar rule:

statement → “while” “(” boolExpr “)” “{” block “}” .

Here, boolExpr is a Boolean expression returning either true or false. This condition is called
the guard of the while loop. The syntactical variable block denotes a sequence of statements.
Note that, in contrast to the programming languages C and Java, the block of statements always
has to be enclosed in curly braces, even if it consists only of a single statement. The semantics of
a while loop is the same as in C: The loop is executed as long as the guard is true. In order to
abort an iteration prematurely, SetlX provides the command continue. This command aborts
the current iteration of the loop and proceeds with the next iteration. In order to abort the loop
itself, the command break can be used. Figure 3.17 shows a function that uses both a break

statement and a continue statement. This function will print the number 1. Then, when n
is incremented to 2, the continue statement in line 6 is executed so that the number 2 is not
printed. In the next iteration of the loop, the number n is incremented to 3 and printed. In the
final iteration of the loop, n is incremented to 4 and the break statement in line 9 terminates the
loop.

1 testBreakAndContinue := procedure() {

2 n := 0;

3 while (n < 10) {

4 n := n + 1;

5 if (n == 2) {

6 continue;

7 }

8 if (n == 4) {

9 break;

10 }

11 print(n);

12 }

13 };

Figure 3.17: This function demonstrates the semantics of break and continue.

3.5.2 do-while Loops

Similar to the language C, SetlX supports the do-while loop. The difference between a do-while

loop and an ordinary while loop is that sometimes the body of a loop needs to execute at least
once, regardless of the condition controlling the loop. For example, imagine you want to implement
the following guessing game: The computer thinks of a natural number between 0 and 100 inclusive
and the player has to guess it. Every time the player enters some number, the computer informs
the player whether the number was too big, too small, or whether the player has correctly guessed
the secret number. In this guessing game, the player always has to enter at least one number.
Therefore, the most natural way to implement this game is to use a do-while loop. Figure 3.18
shows an implementation of the guessing game. The implementation works as follows:

1. In line 2, the secret number is generated as a random number. This is the number that has
to be guessed by the player.

— 41 —

3.5. Loops Chapter 3. Statements

2. The variable count is used to count the number of guessing attempts. This variable is
initialised in line 3.

3. Since the user has to enter at least one number, we use a do-while loop that loops as long
as the user has not yet guessed the secret number.

In line 6, the user is asked to guess the secret number. If this number is either too small
or too big, an appropriate message is printed. The loop terminates in line 14 if the number
that has been guessed is identical to the secret number.

1 guessNumber := procedure() {

2 secret := rnd(100);

3 count := 0;

4 do {

5 count += 1;

6 x := read("input a number between 0 and 100 inclusively: ");

7 if (x < secret) {

8 print("sorry, too small");

9 } else if (x > secret) {

10 print("sorry, too big");

11 } else {

12 print("correct!");

13 }

14 } while (x != secret);

15 print("number of guesses: $count$");

16 };

Figure 3.18: Implementing the guessing game in SetlX.

The syntax of a do-while loop is given by the following grammar rule:

statement → “do” “{” block “}” “while” “(” boolExpr “)” “;” .

Here, boolExpr is a Boolean expression returning either true or false. This expression is called
the guard of the do-while loop. The syntactical variable block denotes a sequence of statements.
Note that, in contrast to the programming languages C and Java, the block of statements always
has to be enclosed in curly braces, even if it consists only of a single statement. Furthermore, note
that a do-while loop has to be terminated with a semicolon.

The semantics of a do-while loop is the same as in C: The body of the loop is executed once.
Then, if the guard is false, execution terminates. Otherwise, the body is executed again and again
as long as the guard is true. In order to abort an iteration of the loop prematurely, the commands
continue and break can be used. These commands work in the same way as in a while loop.

3.5.3 for Loops

In order to perform a list of commands a predefined number of times, a for loop should be used.
Figure 3.19 on page 43 shows some SetlX code that prints a multiplication table. The output of
this program is shown in Figure 3.20 on page 43.

In the program in Figure 3.19, the printing is done in the two nested loops that start in line
8. In line 8, the counting variable i iterates over all values from 1 to 10. Similarly, the counting
variable j in line 9 iterates over the same values. The product i * j is computed in line 10 and
printed without a newline using the function nPrint. The function rightAdjust(n) turns the

— 42 —

Chapter 3. Statements 3.5. Loops

number n into a string by padding the number with blanks from the left so that the resulting
string always has a length of 4 characters.

1 rightAdjust := procedure(n) {

2 switch {

3 case n < 10 : return " " + n;

4 case n < 100: return " " + n;

5 default: return " " + n;

6 }

7 };

8 for (i in [1 .. 10]) {

9 for (j in [1 .. 10]) {

10 nPrint(rightAdjust(i * j));

11 }

12 print();

13 }

Figure 3.19: A simple program to generate a multiplication table.

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

Figure 3.20: Output of the program in Figure 3.19.

The general syntax of a for loop is given by the following Ebnf rule:

statement → “for” “(” iterator (“,” iterator)∗ “)” “{” block “}”.
Here an iterator is either a simple iterator or a tuple iterator. A simple iterator has the form

x “in” s

where s is either a set, a list, or a string and x is the name of a variable. This variable is bound
to the elements of s in turn. For example, the statement

for (x in [1..10]) { print(x); }
will print the numbers from 1 to 10. If s is a string, then the variable x iterates over the characters
of s. For example, the statement

for (c in "abc") { print(c); }
prints the characters "a", "b", and "c".

The iterator of a for loop can also be a tuple iterator. The simplest form of a tuple is

[x1, · · · , xn] “in” s.

— 43 —

3.5. Loops Chapter 3. Statements

Here, s must be either a set or a list that contains lists of length n as elements. Figure 3.21 on
page 44 shows a procedure that computes the relational product of two binary relations r1 and
r2. In set theory, the relational product r1 ◦ r2 is defined as

r1 ◦ r2 := {〈x, z〉 | 〈x, y〉 ∈ r1 ∧ 〈y, z〉 ∈ r2}.
The for loop in line 3 iterates over the two relations r1 and r2. The following if statement selects
those pairs of pairs of numbers such that the second component of the first pair is identical to the
first component of the second pair.

1 product := procedure(r1, r2) {

2 r := {};

3 for ([x, y1] in r1, [y2, z] in r2) {

4 if (y1 == y2) {

5 r += { [x, z] };

6 }

7 }

8 return r;

9 };

Figure 3.21: A program to compute the relational product of two binary relations.

Of course, in SetlX the relational product can be computed more easily via set comprehension.
Figure 3.22 on page 44 shows an implementation that is based on set comprehension. It is a bit
shorter as the test in line 4 of Figure 3.21 is essentially integrated in the definition of the set in
line 2 of Figure 3.22. In general, most occurences of for loops can be replaced by equivalent
set definitions. Our experience shows that the resulting code will be both shorter and easier to
understand.

1 product := procedure(r1, r2) {

2 return { [x, z] : [x, y] in r1, [y, z] in r2 };

3 };

Figure 3.22: Computing the relational product via set comprehension.

Iterators can be even more complex, since the tuples can be nested, so something like

for ([[x,y],z] in s) { · · · }
is possible. However, as this feature is rarely needed, we won’t discuss it in more detail.

A for loop creates a local scope for the iteration variable. This means that changes to the
variable x that occur in the for loop are not visible outside of the for loop. Therefore, the last
line of the program shown in Figure 3.23 prints the message

x = 1.

— 44 —

http://en.wikipedia.org/wiki/Variable_scope

Chapter 3. Statements 3.5. Loops

1 x := 1;

2 for (x in "abc") {

3 print(x);

4 }

5 print("x = x");

Figure 3.23: A program illustrating the scope of a for loop.

— 45 —

Chapter 4

Regular Expressions

Regular expressions are a very powerful tool when processing strings. Therefore, most modern
programming languages support them. SetlX is no exception. As the SetlX interpreter is
impemented in Java, the syntax of the regular expressions supported by SetlX is the same as
the syntax of regular expressions in Java. Therefore, we will not to describe the syntax of regular
expressions in this document. The documentation of the Java class java.util.regex.Pattern,
which can be found at

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html,

contains a concise description of the syntax and semantics of regular expressions. For a more
general discussion of the use of regular expression, the book of Friedl [Fri06] is an excellent choice.
Here, we will confine ourselves to show how regular expressions can be used in SetlXprograms.
SetlXprovides two control structures that make use of regular expressions. The first is the match
statement and the second is the scan statement.

4.1 Using Regular Expressions in a match Statement

Instead of the keyword “case”, a branch in a match statement can begin with the keyword “regex”.
Figure 4.1 shows the definition of a function named classify that takes a string as its argument
and tries to classify this string as either a word or a number.

1 classify := procedure(s) {

2 match (s) {

3 regex ’0|[1-9][0-9]*’: print("found an integer");

4 regex ’[a-zA-Z]+’ : print("found a word");

5 regex ’\s+’ : // skip white space

6 default : print("unkown: s");

7 }

8 };

Figure 4.1: A simple function to recognize numbers and words.

Note that we have specified the regular expressions using literal strings, i.e. strings enclosed in
single quote characters. This is necessary, since the regular expression in line 5

’\s+’

contains a backslash character. If we had used double quotes, it would have been necessary to

— 46 —

http://en.wikipedia.org/wiki/Regular_expression
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Chapter 4. Regular Expressions 4.1. Using Regular Expressions in a match Statement

escape the backslash character with another backslash and we would have had to write

"\\s+"

instead. Invoking the function classify as

classify("123");

prints the message “found an integer”, while invoking the function as

classify("Hugo");

prints the message ‘found a word”. Finally, calling

classify("0123");

prints the answer “unkown: 0123”.

4.1.1 Extracting Substrings

Often, strings are structured and the task is to extract substrings corresponding to certain parts
of a string. This can be done using regular expressions. For example, consider a phone number in
the format

+49-711-6673-4504.

Here, the substring “49” is the country code, the substring “711” is the area code, the substring
“6673” is the company code, and finally “4504” is the extension. The regular expression

\+([0-9]+)-([0-9]+)-([0-9]+)-([0-9]+)

specifies this format and the different blocks of parentheses correspond to the different codes. If a
phone number is given and the task is to extract, say, the country code and the area code, then
this can be achieved with the SetlX function shown in Figure 4.2.

1 extractCountryArea := procedure(phone) {

2 match (phone) {

3 regex ’\+([0-9]+)-([0-9]+)-([0-9]+)-([0-9]+)’ as [_, c, a, _, _]:

4 return [c, a];

5 default: abort("The string $phone$ is not a phone number!");

6 }

7 };

Figure 4.2: A function to extract the country and area code of a phone number.

Here, the regular expression to recognize phone numbers has several parts that are enclosed in
parentheses. These parts are collected in a list of the form

[s, p1, · · · , pn].

The first element s of this list is the string that matched the regular expression. The remaning
elements pi correspond to the different parts of the regular expression: p1 corresponds to the first
group of parentheses, p2 corresponds to the second group, and in general pi corresponds to the
i-th group. In line 3 this list is the matched against the pattern

[, c, a, ,].

Therefore, if the match is successful, the variable c will contain the country code and the variable
a is set to the area code. The groups of regular expressions that are not needed are matched

— 47 —

4.1. Using Regular Expressions in a match Statement Chapter 4. Regular Expressions

against the anonymous variable “ ”.

If a regular expression contains nested groups of parentheses, then the order of the groups is
determined by the left parenthesis of a group. For example, the regular expression

’((a+)(b*)c?)d’

contains three groups:

1. the first group is ’((a+)(b*)c?)’,

2. the second group is ’(a+)’, and

3. the third group is ’(b*)’.

4.1.2 Testing Regular Expressions

In real life applications, regular expressions can get quite involved and difficult to comprehend.
The function testRegexp shown in Figure 4.3 can be used to test a given regular expression:
The function takes a regular expression re as its first argument, while the second argument is a
string s. The function tests whether the string s matches the regular expression re. If this is the
case, the function testRegexp returns a list that contains all the substrings corresponding to the
different parenthesized groups of the regular expression re. For example, invoking this function
as

testRegexp(’(a*)(a+)b’, "aaab");

yields the result

["aaab", "aa", "a"].

Here, the first element of the list is the string that was matched by the regular expression, the
second element "aa" corresponds to the regular subexpression ’(a*)’, and the last element "a"

corresponds to the regular subexpression ’(a+)’.

1 testRegexp := procedure(re, s) {

2 match (s) {

3 regex re as l: return l;

4 default : print("no match!");

5 }

6 };

Figure 4.3: Testing regular expressions.

4.1.3 Extracting Comments from a File

In this section we present an example of the match statement in action. The function printComments

shown in Figure 4.4 attempts to extract all those C-style comments from a file that are contained
in a single line. The regular expression ’\s*(//.*)’ in line 5 matches comments starting with
“//”, while the regular expression

’\s*(\/*([^*]|*+[^*/])**+\/)\s*’

in line 6 matches comments that start with the string “/*” and end with the string “*/”. This
regular expression is quite difficult to read for two reasons:

— 48 —

Chapter 4. Regular Expressions 4.1. Using Regular Expressions in a match Statement

1. We have to preceed the symbol “*” with a backslash in order to prevent it from being
interpreted as a quantifier.

2. We have to ensure that the string between “/*” and “*/” does not contain the substring
“*/”. The regular expression

([^*]|*+[^*/])*

specifies this substring: This substring can have an arbitrary number of parts that satisfy
the follwing specification:

(a) A part may consists of any character different from the character “*”. This is specificed
by the regular expression ’[^*]’.

(b) A part may be a sequence of “*” characters that is neither followed by the character “/”
nor the character “*”. These parts are matched by the regular expression *+[^*/].

Concatenating any number of these parts will never produce a string containing the substring
“*/”.

3. Lastly, we have to ensure that we can match a string of the form “***· · ·***/” that ends the
comment. The problem here is that we need not only be able to recognize the string “*/”
but also have to deal with the case that this string is preceded by an arbitrary number of
“*”-characters, since the regular expression ([^*]|*+[^*/])* does not accept any trailing
“*”-characters that are followed by the string “*/”.

1 printComments := procedure(file) {

2 lines := readFile(file);

3 for (l in lines) {

4 match (l) {

5 regex ’\s*(//.*)’ as c: print(c[2]);

6 regex ’\s*(/*([^*]|*+[^*/])**+/)\s*’ as c: print(c[2]);

7 }

8 }

9 };

10

11 for (file in params) {

12 printComments(file);

13 }

Figure 4.4: Extracting comments from a given file.

If the code shown in Figure 4.4 is stored in the file find-comments.stlx, then we can invoke
this program as

setlx find-comments.stlx --params file.stlx

The option “--params” creates the global variable params that contains a list containing all the
remaining arguments given to the program. In this case, there is just one argument, which is the
string “file.stlx”. Therefore, params is a list of length one. The first element of this list is the
string “file.stlx”. Hence the for loop in line 11 will call the function printComments with the
string “file.stlx”. If we invoke the program using the command

setlx find-comments.stlx --params *.stlx

instead, then the function printComments will be called for all files ending in “.stlx”.

— 49 —

4.2. The scan Statement Chapter 4. Regular Expressions

4.1.4 Conditions in match Statements

A clause of a match statement can contain an optional Boolean condition that is separated from
the regular expression by the string “|”. Figure 4.5 shows a program to search for palindromes

in a given file. Line 6 shows how a condition can be attached to a regex clause. The regular
expression

’[a-zA-Z]+’

matches any number of letters, but the string c[1] corresponding to the match is only added to
the set of palindromes if the predicate isPalindrome[c[1]) yields true.

1 findPalindrome := procedure(file) {

2 all := split(join(readFile(file), "\n"), ’[^a-zA-Z]+’);

3 palindromes := {};

4 for (s in all) {

5 match (s) {

6 regex ’[a-zA-Z]+’ as c | isPalindrome(c[1]):

7 palindromes += { c[1] };

8 regex ’.|\n’:

9 // skip rest

10 }

11 }

12 return palindromes;

13 };

14

15 isPalindrome := procedure(s) {

16 n := #s + 1;

17 return +/ [s[n - i] : i in [1 .. #s]] == s;

18 };

Figure 4.5: A program to find palindromes in a file.

4.2 The scan Statement

1 printComments := procedure(file) {

2 s := join(readFile(file), "\n");

3 scan (s) {

4 regex ’//[^\n]*’ as c: print(c[1]);

5 regex ’/*([^*]|*+[^*/])**+/’ as c: print(c[1]);

6 regex ’.|\n’ : // skip every thing else

7 }

8 };

Figure 4.6: Extracting comments using the match statement.

The program to extract comments that was presented in the previous subsection is quite unsatis-
factory as it will only recognize those strings that span a single line. Figure 4.6 shows a function
that instead extracts all comments form a given file. The function printComments takes a string

— 50 —

http://en.wikipedia.org/wiki/Palindrome

Chapter 4. Regular Expressions 4.2. The scan Statement

as argument. This string is interpreted as the name of a file. In line 2, the function readFile

reads this file. This function produces a list of strings. Each string corresponds to a single line of
the file without the trailing line break. The function join joins all these lines into a single string.
As the second argument of join is the string “\n”, a newline is put inbetween the lines that are
joined. The end result is that the variable s contains the content of the file as one string. This
string is then scanned using the scan statement in line 3. The general form of a scan statement
is as follows:

scan (s) {
regex r1 as l : b1

...
regex rn as l : bn

}
Here, s is a string to be analyzed, r1, · · ·, rn denote regular expressions, while b1, · · ·, bn are lists
of statements. The scan statement works as follows:

1. All the regular expressions r1, · · ·, rn are tried in parallel to match a prefix of the string s.

(a) If none of these regular expression matches, the scan statement is aborted with an error
message.

(b) If exactly one regular expression ri matches, then the corresponding statements bi are
executed and the prefix matched by ri is removed from the beginning of s.

(c) If more than one regular expression matches, then there is a conflict which is resolved
in two steps:

i. If the prefix matched by some regular expression rj is longer than any other prefix
matched by a another regular expression ri, then the regular expression rj wins,
the list of statements bj is executed and the prefix matched by rj is removed from
s.

ii. If there are two (or more) regular expressions ri and rj that both match a prefix
of maximal length, then the regular expression with the lowest index wins, i.e. if
i < j, then bi is executed.

2. This is repeated as long as the string s is not empty. Therefore, a scan statement is like a
while loop combined with a match statement.

The clauses in a scan statement can also have Boolean conditions attached. This works the same
way as it works for a match statement.

The scan statement provides a functionality that is similar to the functionality provided by
tools like lex [Les75] or JFlex [Kle09]. In order to support this claim, we present an example
program that computes the marks of an exam. Assume the results of an exam are collected in
a text file like the one shown in Figure 4.7. The first line of this file shows that this is an exam
about algorithms. The third line tells us that there are 6 exercises in the given exam and the
remaining lines list the points that have been achieved by individual students. A hyphen signals
that the student did not do the corresponding exercise. In order to calculate marks, we just have
to add up all the points. From this, the mark can easily be calculated.

Figure 4.8 shows a program that does this calculation. We discuss this program line by line.

1. The function evalExam takes two arguments: The first is the name of a file containing the
results of the exam and the second argument is the number of points needed to get the best
mark. This number is a parameter that is needed to calculate the marks.

2. Line 2 creates a string containing the content of the given file.

— 51 —

http://en.wikipedia.org/wiki/Lex_(software)
http://jflex.de

4.2. The scan Statement Chapter 4. Regular Expressions

1 Exam: Algorithms

2

3 Exercises: 1. 2. 3. 4. 5. 6.

4 Max Müller-Lüdenscheidt: 8 9 8 - 7 6

5 Daniel Dumpfbacke: 4 4 2 0 - -

6 Susi Sorglos: 9 12 12 9 9 6

7 Jacky Jeckle: 9 12 12 - 9 6

Figure 4.7: Typical results from an exam.

1 evalExam := procedure(file, maxPoints) {

2 all := join(readFile(file), "\n");

3 state := "normal";

4 scan(all) using map {

5 regex ’[a-zA-Z]+:.*\n’: // skip header

6 regex ’[A-Za-zäöüÄÖÜß]+\s[A-Za-zäöüÄÖÜß\-]+:’ as [name]:

7 nPrint(name);

8 state := "printBlanks";

9 sumPoints := 0;

10 regex ’[\t]+’ as [whiteSpace] | state == "printBlanks":

11 nPrint(whiteSpace);

12 state := "normal";

13 regex ’[\t]+’ | state == "normal":

14 // skip white space between points

15 regex ’0|[1-9][0-9]*’ as [number]:

16 sumPoints += int(number);

17 regex ’-’:

18 // skip exercises that have not been done

19 regex ’\n’ | sumPoints != om:

20 print(mark(sumPoints, maxPoints));

21 sumPoints := om;

22 regex ’[\t]*\n’ | sumPoints == om:

23 // skip empty lines

24 regex ’.|\n’ as [c]:

25 print("unrecognized character: c");

26 print("line: ", map["line"]);

27 print("column: ", map["column"]);

28 }

29 };

30 mark := procedure(p, m) {

31 return 7.0 - 6.0 * p / m;

32 };

Figure 4.8: A program to compute marks for an exam.

3. We will use two states in our scanner:

(a) The first state is identified by the string "normal". Initially, the variable state has
this value.

— 52 —

Chapter 4. Regular Expressions 4.3. Additional Functions Using Regular Expressions

(b) The second state is identified by the string "printBlanks". We enter this state when
we have read the name of a student. This state is needed to read the white space
between the name of a student and the first number following the student.

In state "normal", all white space is discarded, but in state "printBlanks"white space
is printed. This is necessary to format the output.

Line 3 therefore initializes the variable state to "normal".

4. The regular expression in line 5 is needed to skip the header of the file. The header line can
be recognized by the fact that there is a single word followed by a colon ‘:”. In contrast,
the names of students always consist of two words.

5. The regular expression in line 5 matches the name of a student. This name is printed and
the number of points for this student is set to 0. Furthermore, when the name of a student
is seen, the state is changed to the state "printBlanks".

6. The regular expression in line 10 matches the white space following the name of a student.
Notice that this regular expression has a condition attached to it: The condition is the
formula

state == "printBlanks".

The white space matched by the regular expression is then printed and the state is switched
back to "normal".

In effect, this rule will guarantee that the output is formated in the same way as the input,
as the white space following a student’s name is just copied to the output.

7. Line 13 skips over white space that is encountered in state "normal".

8. The clause in line 15 recognizes strings that can be interpreted as numbers. These strings
are converted into numbers with the help of the function int and then this number is added
to the number of points achieved by this student.

9. Line 17 skips over hyphens as these correspond to an exercise that has not been attempted
by the student.

10. Line 19 checks whether we are at the end of a line listing the points of a particular student.
This is the case if we encounter a newline and the variable sumPoints is not undefined. In
this case, the mark for this student is computed and printed. Furthermore, the variable
sumPoints is set back to the undefined status.

11. Any empty lines are skipped in line 22.

12. Finally, if we encounter any remaing character, then there is a syntax error in our input file.
In this case, line 24 recognizes this character and produces an error message. This error
message specifies the line and column of the character. This is done with the help of the
variable map that has been declared in line 4 via the using directive.

4.3 Additional Functions Using Regular Expressions

There are three predefined functions that use regular expressions.

1. The function

matches(s, r)

takes a string s and a regular expression r as its arguments. It returns true if the string s

— 53 —

4.3. Additional Functions Using Regular Expressions Chapter 4. Regular Expressions

is in the language described by the regular expression r. For example, the expression

matches("42", ’0|[1-9][0-9]*’);

returns true as the string "42" can be interpreted as a number and the regular expression
’0|[1-9][0-9]*’ describes natural numbers in the decimal system.

There is a variant of matches that takes three arguments. It is called as

matches(s, r, true).

In this case, r should be a regular expression containing serveral groups, i.e. there should
be several subexpressions in r that are enclosed in parentheses. Then, if r matches s, the
function matches returns a list of substrings of s. The first element of this list is the string
s, the remaining elements are the substrings corresponding to the different groups of r. For
example, the expression

matches("+49-711-6673-4504", ’\+([0-9]+)-([0-9]+)-([0-9]+)-([0-9]+)’, true)

returns the list

["+49-711-6673-4504", "49", "711", "6673", "4504"].

If matches is called with three arguments where the last argument is true, an unsuccessful
match returns the empty list.

2. The function

replace(s, r, t)

receives three arguments: the arguments s and t are strings, while r is a regular expression.
The function looks for substrings in s that match r. These substrings are then replaced by
t. For example, the expression

replace("+49-711-6673-4504", ’[0-9]{4}’, "XXXX");

returns the string

"+49-711-XXXX-XXXX".

3. There is a variant to the function replace(s, r, t) that replaces only the first substring
in s that matches r. This variant is called replaceFirst and is called as

replaceFirst(s, r, t).

For example, the expression

replaceFirst("+49-711-6673-4504", ’[0-9]{4}’, "XXXX");

returns the string

"+49-711-XXXX-4504".

— 54 —

Chapter 5

Functional Programming and
Closures

We have already stated earlier that SetlX is a full-fledged functional language: Functions can
be used both as arguments to other functions and as return values. There is no fundamental
difference between the type of a function and, say, the type of a rational number, as both can be
assigned to variables, converted to strings, parsed, etc. This works because functions are actually
implemented as closures similar to the way this is done in languages like Scheme [SS75]. In order
to present closures, we present some simple examples first. After that, we show a more complex
case study: We discuss a program that transforms a regular expression into a non-deterministic
finite state machine.

5.1 Introductory Examples

In this section we will first introduce the basic idea of functional programming. After that, we
discuss the notion of a closure.

5.1.1 Introducing Functional Programming

Using functions as arguments to other functions is something that is not often seen in conventional
programming languages. Figure 5.1 shows the implementation of the function reduce that takes
two arguments:

1. The first argument is a list l.

2. The second argument is a function f mapping two arguments of l into a value.

The function reduce combines successive arguments of the list l and thereby reduces the list l
into a single value. For example, if the function f is the function add that just adds its arguments,
then reduce(l, add) computes the sum of the elements of l. Therefore, in line 12 the invocation of
reduce(l, add) computes the sum

n
∑

i=1

i.

If instead the second arguments of the function reduce is the function multiply that returns the
product of its arguments, then reduce(l, multiply) computes the product of all elements of the
list l. Finally, it should be noted that in the case that the list l is empty, reduce returns the value
om.

— 55 —

http://en.wikipedia.org/wiki/Closure_(computer_science)

5.1. Introductory Examples Chapter 5. Functional Programming and Closures

1 reduce := procedure(l, f) {

2 match (l) {

3 case [] : return;

4 case [x] : return x;

5 case [x,y|r]: return reduce([f(x,y) | r], f);

6 }

7 };

8 add := procedure(a, b) { return a + b; };

9 multiply := procedure(a, b) { return a * b; };

10

11 l := [1 .. 36];

12 x := reduce(l, add);

13 y := reduce(l, multiply);

Figure 5.1: Implementing a second order function.

1 sort := procedure(l, cmp) {

2 if (#l < 2) { return l; }

3 m := #l \ 2;

4 [l1, l2] := [l[.. m], l[m+1 ..]];

5 [s1, s2] := [sort(l1, cmp), sort(l2, cmp)];

6 return merge(s1, s2, cmp);

7 };

8 merge := procedure(l1, l2, cmp) {

9 match ([l1, l2]) {

10 case [[], _] : return l2;

11 case [_, []] : return l1;

12 case [[x1|r1], [x2|r2]] :

13 if (cmp(x1, x2)) {

14 return [x1 | merge(r1, l2, cmp)];

15 } else {

16 return [x2 | merge(l1, r2, cmp)];

17 }

18 }

19 };

20 less := procedure(x, y) { return x < y; };

21 greater := procedure(x, y) { return y < x; };

22 l := [1,3,5,4,2];

23 s1 := sort(l, less);

24 s2 := sort(l, greater);

Figure 5.2: A generic sort function.

Notice that the function reduce is a so called second order function because one of its argu-
ments is itself a function. While the example given above might seem artificial, there are common
applications of this scheme. One example is sorting. Figure 5.2 on page 56 shows a generic
implementation of the merge sort algorithm. Here, the function sort takes two arguments:

1. The first argument l is the list to be sorted.

— 56 —

Chapter 5. Functional Programming and Closures 5.1. Introductory Examples

2. The second argument cmp is a binary function that compares two list elements and returns
either true or false. If we call the function sort with second argument less, where the
function less is defined in line 20, then the resulting list will be sorted ascendingly. If
instead we use the function greater defined in line 21 as the second argument, then the list
l will be sorted descendingly.

The second argument cmp of the procedure sort enables us to sort a list that contains
elements that are not numbers. In order to do so, we just have to implement an appropriate
version of the function cmp.

So far, the functions we have discussed did not return functions. The next example will change
that. In mathematics, given a function

f : N → N

mapping natural numbers into natural numbers, the discrete derivative of f is again a function
mapping natural numbers to natural numbers and is denoted as ∆f . For n ∈ N, the value (∆f)(n)
is defined as

(∆f)(n) := f(n + 1) − f(n).

For example, given the function f : N → N defined as f(n) := 2n, we have

(∆f)(n) = 2n+1 − 2n = 2n = f(n).

To give another example, the discrete derivative of the identity function is the function that maps
every natural number to the number 1, since (n + 1) − n = 1.

1 delta := procedure(f) {

2 return n |-> f(n+1) - f(n);

3 };

4 g := n |-> n;

5 h := n |-> 2 ** n;

6 deltaG := delta(g);

7 deltaH := delta(h);

8

9 print([deltaG(n) : n in [1 .. 10]]);

10 print([deltaH(n) : n in [1 .. 10]]);

Figure 5.3: Computing the discrete derivative of a given function.

Figure 5.3 shows the implementation of the function delta that takes a function f as input and
then returns the discrete derivative of f . In line 6 and 7, this function is applied to the identity
function and to the function n 7→ 2n, respectively. The resulting functions deltaG and deltaH

are then applied to the sequence of natural numbers from 1 to 10. In the first case, the result is a
list containing the number 1 for ten times, while in the second case the the result is a list of the
first ten powers of 2.

5.1.2 Implementing Counters via Closures

The concept of a closure is non-trivial, therefore we introduce the idea using some simple examples.
Figure 5.4 shows the function createCounter. This function initializes the variable count to a
given value and then returns a procedure that increments this value.

Notice that the variable count is defined outside the procedure counter. Still, the function
counter has access to this variable: It can both read its value and can even change the value.

— 57 —

5.2. Closures in Action Chapter 5. Functional Programming and Closures

1 createCounter := procedure(i) {

2 count := i;

3 counter := procedure() {

4 count += 1;

5 return count;

6 };

7 return counter;

8 };

9 ctr0 := createCounter(0);

10 ctr9 := createCounter(9);

11

12 u := ctr0(); v := ctr0(); w := ctr0();

13 x := ctr9(); y := ctr9(); z := ctr9();

Figure 5.4: Creating a counter as a closure.

When the function counter is defined, the variable count is safely tucked away together with
the function counter. Therefore, although the variable count goes out of scope once the function
createCounter terminates, the function counter still has access to a copy of this variable. There-
fore, when we call the function createCounter in line 9, the variable ctr0 is assigned a version
of the function counter where the variable count initially has the value 0. Later, when we call the
function ctr0, in line 12, this counter is incremented 3 times. Therefore, after line 12 is executed,
the variables u, v, and w have the values 1, 2, and 3, respectively.

You should also notice that the function ctr9 created in line 10 gets its own copy of the
variable count. In the case of the function ctr9, this copy of count is initialized with the value
9. Therefore, after we have called the function ctr9 in line 13, the variables x, y, and z will have
the values 10, 11, and 12.

5.2 Closures in Action: Generating Finite State Machines
from Regular Expressions

In this section we demonstrate a non-trivial application of closures. We present a program that
takes a regular expression r as input and that converts this regular expression into a non-deterministic finite state machine

using the Thompson construction [HMU06]. For the purpose of this section, regular expressions

are defined inductively as follows.

1. Every character c is a regular expression matching exactly this character and nothing else.

2. If r1 and r2 are regular expressions, then r1 · r2 is a regular expression. If r1 matches the
string s1 and r2 matches the string s2, then r1 · r2 matches the string s1s2, where s1s2 is
understood as the concatenation of s1 and s2.

3. If r1 and r2 are regular expressions, then r1 | r2 is a regular expression. The regular
expression r1 | r2 matches any string that is matched by either r1 or r2.

4. If r is a regular expression, then r∗ is a regular expression. This regular expression matches
the empty string and, furthermore, matches any string s that can be decomposed as

s = t1t2 · · · tn
where each of the substrings ti is matched by the regular expression r.

— 58 —

http://en.wikipedia.org/wiki/Nondeterministic_finite_automaton
http://en.wikipedia.org/wiki/Thompson's_construction_algorithm

Chapter 5. Functional Programming and Closures 5.2. Closures in Action

For the purpose of the program we are going to develop, composite regular expressions will be
represented by terms. In detail, we have the following representation of regular expressions.

1. A regular expression r of the form r = c where c is a single character is represented by the
string consisting of the character c.

2. A regular expression r of the form r = r1 · r2 is represented by the term

Cat(r1, r2)

where r1 is the representation of r1 and r2 is the representation of r2.

3. A regular expression r of the form r = r1 | r2 is represented by the term

Or(r1, r2)

where r1 is the representation of r1 and r2 is the representation of r2.

4. A regular expression r of the form r = r∗0 is represented by the term

Star(r0)

where r0 is the representation of r0.

The Thompson construction of a non-deterministic finite state machine from a given regular
expression r works by induction on the structure of r. Given a regular expression r, we define a
non-deterministic finite state machine A(r) by induction on r. For the purpose of this section, a
finite state machine A is a 4-tuple

A = 〈Q, δ, q0, qf 〉
where Q is the set of states, δ is the transition function and maps a pair 〈q, c〉 where q is a state
and c is a character to a set of new states. If we denote the set of characters as Σ, then the
function δ has the signature

δ : Q × Σ → 2Q.

The understanding of δ(q, c) is that if the finite state machine A is in the state q and reads the
character c, then it can switch to any of the states in δ(q, c). Finally, q0 is the start state and qf

is the accepting state. In the following, we abbreviate the notion of a finite state machine as fsm.

1. For a letter c the fsm A(c) is defined as

A(c) = 〈{q0, q1}, {〈q0, c〉 7→ q1}, q0, q1〉.
The set of states is given as {q0, q1}, on reading the character c the transition function maps
the state q0 to q1, the start state is q0 and the accepting state is q1. This fsm is shown in
Figure 5.5.

q0 q1
c

Figure 5.5: The finite state machine A(c).

Figure 5.6 shows the function genCharNFA that takes a character c and generates the fsm
A(c). The code corresponds closely to the diagram shown in Figure 5.5.

(a) We generate two new states q0 and q1 using the function getNewState. The imple-
mentation of this function is shown in Figure 5.13 on page 63. It creates a new unique
string that is interpreted as a state.

— 59 —

5.2. Closures in Action Chapter 5. Functional Programming and Closures

1 genCharNFA := procedure(c, rw ctr) {

2 q0 := getNewState(ctr);

3 q1 := getNewState(ctr);

4 delta := procedure(q, d) {

5 if (q == q0 && d == c) {

6 return { q1 };

7 } else {

8 return {};

9 }

10 };

11 return [{q0, q1}, delta, q0, q1];

12 };

Figure 5.6: Generating the fsm to recognize the character c.

(b) The transition function checks whether the state q given as input is equal to the start
state q0 and whether, furthermore, the character d that is read is identical to the
character c. If this is the case, the fsm switches into the state q1 and therefore the set
of possible next states is the singelton set {q1}. Since this is the only transition of the
fsm, in all other cases the set of next states is empty.

2. In order to compute the fsm A(r1 · r2) we have to assume that the states of the fsms A(r1)
and A(r2) are different. Let us assume that the fsms A(r1) and A(r2) have the following
form:

(a) A(r1) = 〈Q1, δ1, q1, q2〉,
(b) A(r2) = 〈Q2, δ2, q3, q4〉, where

(c) Q1 ∩ Q2 = {}.
Using A(r1) and A(r2) we construct the fsm A(r1 · r2) as

〈Q1 ∪ Q2, Σ, {〈q2, ε〉 7→ q3} ∪ δ1 ∪ δ2, q0, q4〉
The notation {〈q2, ε〉 7→ q3} ∪ δ1 ∪ δ2 specifies that the transition function δ contains all
transitions from the transition functions δ1 and δ2. Additionally, there is an ε-transition
from q2 to q3. Formally, the transition function could also be specified as follows:

δ(q, c) :=

{q3} if q = q2 and c = ε,

δ1(q, c) if q ∈ Q1 and 〈q, c〉 6= 〈q2, ε〉,
δ2(q, c) if q ∈ Q2.

Figure 5.7 depicts the fsm A(r1 · r2).

A(r1) A(r2)

q1 q2 q3
ε

q4

Figure 5.7: The finite state machine A(r1 · r2).

Figure 5.8 on page 61 shows the implementation of the function catenate. This function
takes two finite state machines f1 and f2 and concatenates them in the way depicted in

— 60 —

Chapter 5. Functional Programming and Closures 5.2. Closures in Action

Figure 5.7. This function can be used to compute A(r1 · r2), since we have

A(r1 · r2) = catenate
(

A(r1), A(r2)
)

.

1 catenate := procedure(f1, f2) {

2 [m1, delta1, q1, q2] := f1;

3 [m2, delta2, q3, q4] := f2;

4 delta := procedure(q, c) {

5 if (q == q2 && c == "") {

6 return { q3 };

7 } else if (q in m1) {

8 return delta1(q, c);

9 } else if (q in m2) {

10 return delta2(q, c);

11 } else {

12 return {};

13 }

14 };

15 return [m1 + m2, delta, q1, q4];

16 };

Figure 5.8: The function to compute A(r1 · r2)

3. In order to define the fsm A(r1 + r2) we assume that we have already computed the fsms
A(r1) and A(r2) and that their sets of states are disjoint. If A(r1) and A(r2) are given as

A(r1) = 〈Q1, δ1, q1, q3〉 and A(r2) = 〈Q2, δ2, q2, q4〉
then the fsm A(r1 + r2) can be defined as

〈{q0, q5} ∪ Q1 ∪ Q2, {〈q0, ε〉 7→ q1, 〈q0, ε〉 7→ q2, 〈q3, ε〉 7→ q5, 〈q4, ε〉 7→ q5} ∪ δ1 ∪ δ2, q0, q5〉.
This finite state machine is shown in Figure 5.9. In addition to the states of A(r1) and A(r2)
there are two additional states:

(a) q0 is the start state of the fsm A(r1 + r2),

(b) q5 is the accepting state of A(r1 + r2).

In addition to the transitions of the fsms A(r1) and A(r2) we have four ε-transitions.

(a) There are ε-transitions from q0 to the states q1 and q2.

(b) There are ε-transitions from q3 and q4 to q5.

A(r1)

A(r2)
q0

q1
ε

q2

ε

q3

q4

q5

ε

ε

Figure 5.9: The finite state machine A(r1 + r2).

— 61 —

5.2. Closures in Action Chapter 5. Functional Programming and Closures

1 disjunction := procedure(f1, f2, rw ctr) {

2 [m1, delta1, q1, q3] := f1;

3 [m2, delta2, q2, q4] := f2;

4 q0 := getNewState(ctr);

5 q5 := getNewState(ctr);

6 delta := procedure(q, c) {

7 if (q == q0 && c == "") {

8 return { q1, q2 };

9 } else if (q in { q3, q4 } && c == "") {

10 return { q5 };

11 } else if (q in m1) {

12 return delta1(q, c);

13 } else if (q in m2) {

14 return delta2(q, c);

15 } else {

16 return {};

17 }

18 };

19 return [{ q0, q5 } + m1 + m2, delta, q0, q5];

20 };

Figure 5.10: The function to compute A(r1 + r2).

Figure 5.10 on page 62 shows the implementation of the function disjunction. This function
takes two finite state machines f1 and f2 and combines them in the way depicted in Figure
5.9. This function can be used to compute A(r1 + r2), since we have

A(r1 + r2) = disjunction
(

A(r1), A(r2)
)

.

4. In order to define A(r∗) we assume A(r) is given as

A(r) = 〈Q, δ, q1, q2〉.
Then A(r∗) is defined as

〈{q0, q3} ∪ Q, {〈q0, ε〉 7→ q1, 〈q2, ε〉 7→ q1, 〈q0, ε〉 7→ q3, 〈q2, ε〉 7→ q3} ∪ δ, q0, q3〉.

A(r1)

q0

q1ε
q3ε

q2
ε

ε

Figure 5.11: The finite state machine A(r∗).

Figure 5.11 depicts the fsm A(r∗). In addition to the states of the fsm A(r) there are two
new states:

(a) q0 is the start state of A(r∗),

(b) q3 is the accepting state of A(r∗).

Furthermore, there are four additional ε-transitions.

(a) There are two ε-transitions form the start state q0 to q1 and q3.

— 62 —

Chapter 5. Functional Programming and Closures 5.2. Closures in Action

(b) From q2 there is an ε-transition back to q1 and also an ε-transition to q3.

Figure 5.12 on page 63 shows the implementation of the function kleene. This function
takes a finite state machine f and transforms it in the way depicted in Figure 5.11. This
function can be used to compute A(r∗), since we have

A(r∗) = kleene
(

A(r)
)

.

1 kleene := procedure(f, rw ctr) {

2 [m, delta0, q1, q2] := f;

3 q0 := getNewState(ctr);

4 q3 := getNewState(ctr);

5 delta := procedure(q, c) {

6 if (q == q0 && c == "") {

7 return { q1, q3 };

8 } else if (q == q2 && c == "") {

9 return { q1, q3 };

10 } else if (q in m) {

11 return delta0(q, c);

12 } else {

13 return {};

14 }

15 };

16 return [{ q0, q3 } + m, delta, q0, q3];

17 };

Figure 5.12: The function to compute A(r∗).

Figure 5.13 shows the procedure getNewState that is used to create new states. Since the
parameter ctr of this procedure is preceded by the keyword rw, this parameter has a call-by-name

semantics and therefore the procedure getNewState is able to increment this variable. Hence, the
states generated by getNewState are unique.

1 getNewState := procedure(rw ctr) {

2 ctr += 1;

3 return "q" + ctr;

4 };

Figure 5.13: A function to generate unique states.

Finally, Figure 5.14 shows how to generate a finite state machine from a given regular expres-
sion. The function regexp2NFA(r) is defined by recursion on r:

1. If r is a single character c, then the fsm A(c) is computed using the function genCharNFA(c).

2. If r = r1 · r2, the function regexp2NFA recursively computes finite state machines A(r1) and
A(r2). These fsms are then combined using the function catenate

(

A(r1), A(r2)
)

.

3. If r = r1 + r2, the function regexp2NFA recursively computes finite state machines A(r1)
and A(r2). These fsms are then combined using the function disjunction

(

A(r1), A(r2)
)

.

4. If r = r∗0 , the function regexp2NFA recursively computes the finite state machines A(r0).
This fsm is then transformed using the function kleene

(

A(r0)
)

.

— 63 —

5.2. Closures in Action Chapter 5. Functional Programming and Closures

The reader should note that we have made heavy use of closures to implement the functions
genCharNFA, catenate, disjunction, and kleene.

1 regexp2NFA := procedure(r, rw ctr) {

2 match (r) {

3 case c | isString(c):

4 return genCharNFA(c, ctr);

5 case Cat(r1, r2):

6 return catenate(regexp2NFA(r1, ctr), regexp2NFA(r2, ctr));

7 case Or(r1, r2):

8 return disjunction(regexp2NFA(r1, ctr), regexp2NFA(r2, ctr), ctr);

9 case Star(r0):

10 return kleene(regexp2NFA(r0, ctr), ctr);

11 }

12 };

Figure 5.14: Generating a non-deterministic fsm from a regular expression.

— 64 —

Chapter 6

Exceptions and Backtracking

In the first section of this chapter we will discuss exceptions as a means to deal with error situations.
The second section will introduce a mechanism that supports backtracking. This mechanism is
quite similar to the exception handling in the first subsection. Indeed, we will see that the
backtracking mechanism provided in SetlX is really just a special case of exception handling.

6.1 Exceptions

If we issue the assignment

y := x + 1;

while the variable x is undefined, SetlX reports the following error:

Error in "y := x + 1":

Error in "x + 1":

’om + 1’ is undefined.

Here, evaluation of the expression x + 1 has raised an exception as it is not possible to add a
number to the undefined value om. This exception is then propagated to the enclosing assignment
statement. SetlX offers to handle exceptions like the one described above. The mechanism is
similar to the way exceptions are implemented in Java and uses the keywords “try” and “catch”.
If we have a sequence of statements stmntList and we suspect that something might go wrong
with these statements, then we can put the list of statements into a try/catch-block as follows:

try {
stmntList

} catch (e) { errorCode }
If the execution of stmntList executes without errors, then the try/catch-block does nothing
besides the execution of stmntList. However, if one of the statements in stmntList does raise an
exception, then the execution of stmntList is aborted and instead the statements in errorCode are
executed.

Typically, exception handling is necessary when processing user input. Consider the program
shown in Figure 6.1. The function findZero implements the bisection method which can be used
to find the zero of a function. The first argument of findZero is a function f , while the arguments
a and b are the left and right boundary of the intervall where the zero of f is sought. Therefore, a
has to be less than b. Finally, for the bisection algorithm implemented in the function findZero

to work, the function f needs to have a sign change in the interval [a, b].
The function askUser asks the user to input the function f together with the left and right

boundary of the interval [a, b]. The idea is that the user inputs a term describing the function

— 65 —

http://docs.oracle.com/javase/tutorial/essential/exceptions/

6.1. Exceptions Chapter 6. Exceptions and Backtracking

value of f for a given value of x. For example, in order to compute the zero of the function

x 7→ x ∗ x − 2

the user has to provide the string “x*x-2” as input to the read command in line 3. The string s

that is input by the user is then converted into the string

x |-> x*x-2

in line 4 and, furthermore, the resulting string is parsed and then evaluated. In this way, the
variable f in line 4 will be assigned the function mapping x to x*x-2 just as if the user had
written

f := x |-> x*x-2;

in the command line.

1 askUser := procedure() {

2 try {

3 s := read("Please enter a function: ");

4 f := evalTerm(parse("x |-> " + s));

5 a := read("Enter left boundary: ");

6 b := read("Enter right boundary: ");

7 z := findZero(f, a, b);

8 print("zero at z = z");

9 } catch (e) {

10 print(e);

11 print("Please try again.\n");

12 askUser();

13 }

14 };

15 findZero := procedure(f, a, b) {

16 if (a > b) {

17 throw("Left boundary a has to be less than right boundary b!");

18 }

19 [fa, fb] := [f(a), f(b)];

20 if (fa * fb > 0) {

21 throw("Function f has to have a sign change in [a, b]!");

22 }

23 while (b - a >= 10 ** -12) {

24 c := 1/2 * (a + b);

25 fc := f(c);

26 if ((fa < 0 && fc < 0.0) || (fa >= 0 && fc >= 0)) {

27 a := c; fa := fc;

28 } else {

29 b := c; fb := fc;

30 }

31 }

32 return 1/2 * (a + b);

33 };

Figure 6.1: The bisection method for finding a zero of a function.

— 66 —

Chapter 6. Exceptions and Backtracking 6.1. Exceptions

There are a couple of things that can go wrong with the function askUser. First, the string
s that is input by the user might not be a proper function and then we would presumably get a
parse error in line 4. In this case, the function parse invoked in line 4 will raise an exception.
Next, if the user enters a string of the form

x ** y

then, since the variable y is undefined, the evaluation of the function would raise an exception
when SetlX tries to evaluate an expression of the form

x ** om.

Furthermore, either of the two conditions

a < b or f(a) ∗ f(b) ≤ 0

might be violated. In this case, we raise an exception in line 17 or line 21 of the function findZero.
Since we don’t want to abort the program on the occurrence of an exception, the whole block of
code in line 3 up to line 8 is enclosed in a try/catch-block. In case there is an exception, the
value of this exception, which is a string containing an error message, is caught in the variable
e in line 9. To continue our program, we print the error message in line 10 and then invoke the
function askUser recursively so that the user of the program gets another chance to enter a correct
function.

6.1.1 Different Kinds of Exceptions

SetlX supports two different kinds of exceptions:

1. User generated exceptions are generated by the user via a throw statement. In general, the
statement

throw(e)

raises a user generated exception with the value e.

2. Language generated exceptions are the result of error conditions arising in the program.

While all kinds of exceptions can be caught with a catch clause, most of the time it is useful to
distinguish between the different kinds of exceptions. This is supported by offering two variants
of catch:

1. catchUsr only catches user generated exceptions. For example, the statement

try { throw(1); } catchUsr(e) { print(e); }
prints the number 1, but assuming that the variable y is undefined, the statement

try { x := y + 1; } catchUsr(e) { print("caught " + e); }
will not print anything but instead the command raises an exception.

2. catchLng only catches language generated exceptions. Therefore, the statement

try { x := y + 1; } catchLng(e) { print("caught " + e); }
prints the text

caught Error: ’om + 1’ is undefined.

On the other hand, the exception thrown in the statement

try { throw(1); } catchLng(e) { print(e); }
is a user generated exception and would therefore not be caught.

— 67 —

6.2. Backtracking Chapter 6. Exceptions and Backtracking

Being able to distinguish between user generated and language generated exceptions is quite
valuable and we strongly advocate that user generated exceptions should only be catched using a
catchUsr clause. The reason is, that a simple catch clause which the user intends to catch a user
generated exceptions might, in fact, catch other exceptions and thus mask real errors. In general,
the SetlX interpreter implements a fail fast strategy: Once an error is discovered, the execution
of the program is aborted. The interpreter does a lot of effort to detect errors as early as possible.
However, using unrestricted catch clauses thwarts this strategy and might lead to errors that are
very difficult to locate.

6.2 Backtracking

One of the distinguishing features of the programming language Prolog is the fact that Prolog
supports backtracking . However, on closer inspection of the Prolog programs that are shown in the
text books describing Prolog [SS86, Bra90] it becomes obvious that very few programs actually
make use of backtracking in its most general form. Also, the personal experience of the first
author, who has programmed in Prolog for more than 10 years, suggests that Prolog programs
that use backtracking in an unrestricted fashion tend to be very hard to maintain. In general, it
is our believe that the use of backtracking should always follow the generate and test paradigm:

1. The set of possible values should be generated by a generating function.

2. These values should then be tested. If a test fails, the program backtracks to step 1 where
the next value to be tested is generated.

In order to support the generate and test paradigm, SetlX implements backtracking only in a very
restricted form. Thus, we avoid the pitfalls that accompany an unrestricted use of backtracking.
Backtracking is implemented via the keywords “check” and “backtrack”. A block of the form

check {
stmntList

}
is more or less1 converted into a block of the form

try {
stmntList

} catch (e) {
if (e != "fail") {

throw(e);
}

}
while the keyword “backtrack” is translated into “throw("fail")”.

The program in Figure 6.2 on page 69 solves the 8 queens puzzle. This problem asks to position
8 queens on a chessboard such that no queen can attack another queen. In chess, a queen can
attack all those positions that are either on the same row, on the same column, or on the same
diagonal as the queen. The details of the program in Figure 6.2 are as follows.

1. The procedure solve has two parameters.

(a) The first parameter l is a list of positions of queens that have already been placed on
the board. It can be assumed that the queens already positioned in l do not attack
each other.

1 Technically, instead of the string "fail", SetlX generates a unique exception, which is referred to as a

fail-exception. This exception can only be catched using check.

— 68 —

http://en.wikipedia.org/wiki/Prolog
http://en.wikipedia.org/wiki/Backtracking
http://en.wikipedia.org/wiki/Eight_queens_puzzle

Chapter 6. Exceptions and Backtracking 6.2. Backtracking

1 solve := procedure(l, n) {

2 if (#l == n) {

3 return l;

4 }

5 for (x in {1 .. n} - {i : i in l}) {

6 check {

7 testNext(l, x);

8 return solve(l + [x], n);

9 }

10 }

11 backtrack;

12 };

13 testNext := procedure(l, x) {

14 m := #l;

15 if (exists (i in {1 .. m} | i-l[i] == m+1-x || i+l[i] == m+1+x)) {

16 backtrack;

17 }

18 };

Figure 6.2: Solving the 8 queens puzzle using check and backtrack.

Technically, l is a list on integers. If l[i]= k, then row i contains a queen in column
k. For example,

l = [4, 8, 1, 3, 6, 2, 7, 5]

is a solution of the 8 queens puzzle. This solution is depicted in Figure 6.3.

0Z0L0Z0Z

Z0Z0Z0ZQ

QZ0Z0Z0Z

Z0L0Z0Z0

0Z0Z0L0Z

ZQZ0Z0Z0

0Z0Z0ZQZ

Z0Z0L0Z0

Figure 6.3: A solution of the 8 queens puzzle.

— 69 —

6.2. Backtracking Chapter 6. Exceptions and Backtracking

(b) The second parameter n is the size of the board.

In order to solve the 8 queens puzzle, the procedure solve can be called as

solve([], 8).

Taking the parameter l to be the empty list assumes that initially no queen has been set on
the chess board. Of course, then the assumption that the queens already positioned in l do
not attack each other is trivially satisfied.

2. In line 2 it is checked, whether the list l already specifies the positions of n queens. If this
is the case, then because of the assumption that the queens specified in l do not attack each
other, the problem is solved and therefore l is the solution and is returned.

3. Otherwise, we find a position x for the next queen in line 5. Of course, there is no point
in trying to position the next queen into a row that has already been taken by one of the
queens in the list l. Therefore, the number of positions available for the next queen is given
by the set

{1 .. n} - {i : i in l}.
Note that we had to convert the list l into the set {i : i in l} in order to be able to
subtract the positions specified in l from the set of all possible positions.

4. Once we have decided to position the next queen in row x, we have to test whether a queen
that is put into that position can be attacked by another queen which happens to be on the
same diagonal. This test is performed in line 7 with the help of the function testNext.

5. If this test succeeds, we add a queen in position x to the list l and recursively try to solve
the resulting instance of the problem.

6. On the other hand, if the call to testNext in line 7 fails, we have to try the next value of x.
Now the function testNext does not return a Boolean value to indicate success or failure
so at this point you might well ask how we know that the call to testNext has failed. The
answer is that the function testNext includes a call to backtrack if it is not possible to
place a queen in position x. Technically, calling backtrack raises an exception that is caught
by the check statement in line 6. After that, the for loop in line 5 proceeds and picks the
next candidate for x.

7. During the recursive invocation of the procedure solve in line 8, we might discover that the
list l + [x] can not be completed into a solution of the 8 queens puzzle. In this case, it
is the function solve that backtracks in line 11. This happens when the for loop in line
5 is exhausted and we have not found a solution. Then control reaches line 11, where the
backtrack statment signals that the list l could not be completed into a solution to the n

queens puzzle.

8. The function testNext in line 13 has two parameters: The first parameter is the list of
already positioned queens while the second parameter specifies the column of the next queen.
The function checks whether the queen specified by x is on the same diagonal as any of the
queens in l.

In order to understand the calculation in line 15 we have to realize that the cartesian coor-
dinates of the queens in column x are

〈#l + 1, x〉.
Now a diagonal is specified as the equation of a line with slope either +1 or −1. The i-th
queen in l has the coordinates

— 70 —

Chapter 6. Exceptions and Backtracking 6.2. Backtracking

〈i, l[i]〉.
Therefore, it is on the same ascending diagonal as the queen specified by x if we have

i-l[i] = #l+1-x,

while it is one the same descending diagonal if we have.

i+l[i] = #l+1+x.

It is easy to change the program in Figure 6.2 such that all solutions are completed. Figure
6.4 on page 72 shows how this is done.

1. We have added a function allSolutions. This function gets the parameter n, which is the
size of the board. The function returns the set of all solutions of the n queens puzzle. To do
so, it first initializes the variable all to the empty set. The solutions are then collected in
this set.

2. The function solve now gets all as an additional parameter. Note that this parameter
is specified in line 2 as an rw parameter, so the value of all is actually changed by the
procedure solve.

3. The important change in the implementation of solve is that instead of returning a solution,
a solution that is found is added to the set all in line 10. After that, the function solve

backtracks to look for more solutions. Note that this backtracking here in effect asks the
for-loop in line 13 to look for another solution.

4. Note that we have to enclose the call to solve in line 4 in a check statement. The reason is
that the function solve will never return anything. Instead, it will continue to add solutions
to the set all. If this is no longer possible, the call to solve will backtrack in line 19.
The check statement in the procedure allSolutions is meant to catch the corresponding
fail-exception.

5. The implementation of the function testNext has not changed.

This program finds all 92 solutions to the 8 queens puzzle.
The keyword check can be used with an additional optional branch. In this case the complete

check block has the form

check {
stmntList

} afterBacktrack { body }
Here, body is a list of statements that is executed if there is a call to backtrack in stmntList.
For example, the code

check {

print(1);

backtrack;

print(2);

} afterBacktrack {

print(3);

}

prints the number 1 and 3.

— 71 —

6.2. Backtracking Chapter 6. Exceptions and Backtracking

1 allSolutions := procedure(n) {

2 all := {};

3 check {

4 solve([], n, all);

5 }

6 return all;

7 };

8 solve := procedure(l, n, rw all) {

9 if (#l == n) {

10 all += { l };

11 backtrack;

12 }

13 for (x in {1 .. n} - {i : i in l}) {

14 check {

15 testNext(l, x);

16 solve(l + [x], n, all);

17 }

18 }

19 backtrack;

20 };

21 testNext := procedure(l, x) {

22 m := #l;

23 if (exists (i in {1 .. m} | i-l[i] == m+1-x || i+l[i] == m+1+x)) {

24 backtrack;

25 }

26 };

Figure 6.4: Computing all solutions of the n queens puzzle.

— 72 —

Chapter 7

Classes and Objects

These days, everything is object-oriented . After having spotted object oriented toasters on the
loose, we have decided that SetlX should not be an exception. Therefore, SetlX supports
some basic means for object oriented programming. Most importantly, SetlX supports classes.
In SetlX a class is an agglomeration of variables and functions. These variables are referred
to as member variables, while the functions are called methods. In this chapter we demonstrate
how classes can be defined and used in SetlX. However, this chapter is not intended to be an
introduction into object-oriented programming. Therefore, we assume that the reader has had
some previous exposition to object oriented programming in a language like Java or C++. In the
first section of this chapter, we give some simple examples of class definitions. The programs
presented in that section are not intended to compute anything usefull. Their purpose is just to
demonstrate the basic features of object-oriented programming that are available in SetlX. The
second and third subsection will then discuss more interesting examples: The second subsection
shows how to implement weighted directed graphs via classes and the final subsection discusses
the implementation of complex numbers. The final subsection will also discuss some of the more
advanced features of object-oriented programming that are available in SetlX. In particular, we
will discuss operator overloading.

7.1 Basic Examples

In this section, we introduce the basic means by which object-oriented programming is supported
in SetlX. In the first subsection, we introduce classes. The second subsection shows how to
simulate inheritance.

7.1.1 Introducing Classes

Our first example deals with the representation of points in a plane. One way to specify a point
p is to specify both its x and its y-coordinate. This leads to the class definition shown in Figure
7.1 on page 74. We discuss the details of this definition next.

1. Line 1 defines the class point using the keyword class. Note that line 1 simultaneously
defines a constructor for this class. This constructor takes two arguments x and y. These
two arguments are interpreted as the x and y-coordinate of the point to construct.

The general form of a class definition is as follows:

class name(x1, · · · , xn) {
member-and-method-definitions

}

— 73 —

http://en.wikipedia.org/wiki/Object-oriented_programming
http://www.danielsen.com/jokes/objecttoaster.txt
http://en.wikipedia.org/wiki/Class_(computer_programming)

7.1. Basic Examples Chapter 7. Classes and Objects

1 class point(x, y) {

2 mX := x;

3 mY := y;

4

5 getX := procedure() { return mX; };

6 getY := procedure() { return mY; };

7 setX := procedure(x) { this.mX := x; };

8 setY := procedure(y) { this.mY := y; };

9 toStr := procedure() { return "<mX, mY>"; };

10

11 distance := procedure(p) {

12 return sqrt((mX - p.getX()) ** 2 + (mY - p.getY()) ** 2);

13 };

14 }

Figure 7.1: The class point.

Here name is the name of the class that is defined, x1, · · · , xn are the formal parameters of
the constructor of this class, and member-and-method-definitions is a list of the definitions
of all member variables and methods.

Contrary to the definition of a procedure, the definition of a class is not terminated with the
character “;”.

2. In line 2 and line 3 we define the member variables mX and mY. These two member variables
store the x and y-coordinates of the point that is constructed.

It is our convention to start member variables with a lower case letter “m”. This letter is
intended as abbreviation of member. The letter following the letter “m” will always be capi-
talized. However, this convention is only our recommendation for naming member variables
and you are free to choose any valid variable name to designate a member variable.

3. Line 5 to 8 define getter and setter methods to access and write the member variables mX and
mY. Note that, in order to change a member variable, it is necessary to prefix this member
variable with “this.”. However, this prefixing is not necessary in order to read a member
variable, as can be seen in the implementation of the methods getX and getY.

4. Line 9 defines the method toStr that transforms a given object of class point into a string.

5. Finally, we define a method called distance that takes a point p as argument. This method
computes the distance of the given point to the point p using the Pythagorean theorem.

So far, we have only shown how to define a class but we have not yet seen how to use a class.
Therefore, assume that the code shown in Figure 7.1 has been loaded into the interpreter. Then
we can define an object of class point by writing

origin := point(0, 0);

and the statement

print(toStr(origin));

would result in the following output:

<0, 0>

— 74 —

http://en.wikipedia.org/wiki/Pythagorean_theorem

Chapter 7. Classes and Objects 7.1. Basic Examples

It is instructive to print the object origin itself. The statement

print(origin);

yields the output that is shown in Figure 7.2 on page 75. Note that we have formatted this output
in order to render it readable. Closer inspection of the output reveals that an object is just a
set of all its members. As SetlX is a functional language, there is really no distinction between
a member variable and a method. For example, in line 5 the variable toStr is just a member
variable which happens to be bound to a procedure. Note that the constructor of the class point
is also part of the object origin.

1 object<

2 { distance := procedure(p) {

3 return sqrt((mX-p.getX()) ** 2 + (mY-p.getY()) ** 2);

4 };

5 toStr := procedure() { return "<mX, mY>"; };

6 setX := procedure(x) { this.mX := x; };

7 getY := procedure() { return mY; };

8 mX := 0;

9 setY := procedure(y) { this.mY := y; };

10 getX := procedure() { return mX; };

11 mY := 0;

12 class (x, y) {

13 mX := x;

14 mY := y;

15 distance := procedure(p) {

16 return sqrt((mX - p.getX()) ** 2 + (mY - p.getY()) ** 2);

17 };

18 getX := procedure() { return mX; };

19 getY := procedure() { return mY; };

20 setX := procedure(x) { this.mX := x; };

21 setY := procedure(y) { this.mY := y; };

22 toStr := procedure() { return "<mX, mY>"; };

23 }

24 }

25 >

Figure 7.2: The output of the command “print(origin);”.

At first, the fact that all methods are stored as part of the object origin might seem quite
wastefull. However, this fact enables us to change these methods dynamically. For example, we
can realize that the x and y-coordinates of the object origin really are fixed. Therefore, the getter
methods can be simplified and the setter methods can even be eliminated. Assuming origin is
defined as

origin := point(0, 0);

we could then write the code shown in Figure 7.3. This code would make it impossible to call the
setter methods for the object origin.

On the other hand, if we choose not to change methods on a per-object basis, we could just as
well declare these methods to be static. Then, the resulting code would look as shown in Figure
7.4 on page 76. The only difference to our first implementation of the class point shown in Figure
7.1 on page 74 is the static block that starts in line 5 and ends in line 15. If we now define

— 75 —

7.1. Basic Examples Chapter 7. Classes and Objects

1 origin.getX := procedure() { return 0; };

2 origin.getY := procedure() { return 0; };

3 origin.setX := om;

4 origin.setY := om;

Figure 7.3: Changing the methods attached to origin.

1 class point(x, y) {

2 mX := x;

3 mY := y;

4

5 static {

6 getX := procedure() { return mX; };

7 getY := procedure() { return mY; };

8 setX := procedure(x) { this.mX := x; };

9 setY := procedure(y) { this.mY := y; };

10 toStr := procedure() { return "<mX, mY>"; };

11

12 distance := procedure(p) {

13 return sqrt((mX - p.getX()) ** 2 + (mY - p.getY()) ** 2);

14 };

15 }

16 }

Figure 7.4: The class point implemented using static methods.

origin as

origin := point(0, 0);

and print origin, then the resulting output would be as shown in Figure 7.5 on page 77. Note
that now only the member variables are stored in the object origin. This saves some space.
Fortunately, we can still overwrite the static methods on a per-object basis, i.e. the assignments

origin.getX := procedure() { return 0; };

origin.getY := procedure() { return 0; };

origin.setX := om;

origin.setY := om;

will now make create member variables getX, getY, setX, and setY that are attributes of the
object origin. The static variables of the same name would be unchanged but an expression of
the form

origin.getX()

would now invoke the function bound to the member variable getX and would no longer invoke
the function bound to the static variable getX.

Going back to the code in Figure 7.4, note that in order to invoke one of these static methods
we still need an object of class point. The reason is that otherwise the variables mX and mY, which
are used in these methods, would be undefined.

The last remark might confuse people accustomed to a programming language like Java. Let
us therefore elaborate: If we use the definition of the class point shown in Figure 7.4 on page 76

— 76 —

Chapter 7. Classes and Objects 7.1. Basic Examples

1 object<

2 { mX := 0;

3 mY := 0;

4 class (x, y) {

5 mX := x;

6 mY := y;

7 static {

8 distance := procedure(p) {

9 return sqrt((mX-p.getX()) ** 2 + (mY-p.getY()) ** 2);

10 };

11 getX := procedure() { return mX; };

12 getY := procedure() { return mY; };

13 setX := procedure(x) { this.mX := x; };

14 setY := procedure(y) { this.mY := y; };

15 toStr := procedure() { return "<mX, mY>"; };

16 }

17 }

18 }

19 >

Figure 7.5: Output of “print(origin);”.

and define the object origin as

origin := point(0,0);

then we can issue the command

print(point.getX);

and get the result

procedure() { return mX; }.
This shows that the method getX is indeed a property of the class point. However, we cannot
invoke this method on the class point because this method needs access to the member variable
mX and this member variable is only available in objects of class point, but it is not am attribute
property of the class point itself, since only members defined as static are attribute of a class.
Therefore, the command

point.getX();

yields the output

~< Result: om >~

indicating that mX is undefined.

Of course, classes can have static variables. These are then accessible by means of the class
name. This way, we can simulate global variables in SetlX. For example, we can define the class
universal as shown in Figure 7.6. Then, we can always access the universal constant using the
expression

universal.gAnswer

Note that we can both read and write to this variable.

— 77 —

http://en.wikipedia.org/wiki/Answer_to_the_Ultimate_Question_of_Life,_the_Universe,_and_Everything#Answer_to_the_Ultimate_Question_of_Life.2C_the_Universe_and_Everything_.2842.29

7.1. Basic Examples Chapter 7. Classes and Objects

1 class universal() {

2 static {

3 gAnswer := 42;

4 }

5 }

Figure 7.6: Defining global variables as static members of a class.

7.1.2 Simulating Inheritance

Continuing the example of the class point shown in Figure 7.1, let us assume that some points
have a color as an additional attribute. If we were programming in Java and wanted to support
both points with and without a color, we could create a class coloredPoint that extends the
class point. The mechanics are a little different in SetlX. Figure 7.7 on page 78 shows how to
implement both ordinary points and colored points in SetlX.

1 class point(x, y) {

2 mX := x;

3 mY := y;

4

5 getX := procedure() { return mX; };

6 getY := procedure() { return mY; };

7 setX := procedure(x) { this.mX := x; };

8 setY := procedure(y) { this.mY := y; };

9 toStr := procedure() { return "<mX, mY>"; };

10 distance := procedure(p) {

11 return sqrt((mX - p.getX()) ** 2 + (mY - p.getY()) ** 2);

12 };

13 }

14 class color(r, g, b) {

15 mR := r; mG := g; mB := b;

16 }

17 coloredPoint := procedure(x, y, c) {

18 p := point(x, y);

19 p.mColor := c;

20

21 p.toStr := procedure() {

22 return "<mX, mY>: $mColor.mR$, $mColor.mG$, $mColor.mB$";

23 };

24 return p;

25 };

Figure 7.7: Representing colored points.

1. Line 1 defines the class point. The definition is the same as in Figure 7.1.

2. Line 14 defines the class color. This class stored the color by its rgb value: The member
variable mR specifies the luminosity of the red color component, mG gives the luminosity of
the green color component, and mB defines the blue color component.

— 78 —

http://en.wikipedia.org/wiki/RGB_color_model

Chapter 7. Classes and Objects 7.2. A Case Study: Dijkstra’s Algorithm

Note that it is not necessary to implement getters and setters for these member variables
since in SetlX all member variables are accessible in the methods of the class.

3. Line 17 defines the procedure coloredPoint. This procedure takes three arguments:

(a) x and y specify the x and y-coordinate of the given point and

(b) c specifies the color of the point.

The procedure coloredPoint constructs a colored point. In order to do so, it takes the
following steps:

(a) Line 18 creates an ordinary point p that has the specified coordinates.

(b) Line 19 adds the member variable mColor to the point p.

Note that in SetlX it is possible to add member variables dynamically to a given
object.

(c) Line 21 changes the method toStr for the object p. The new implementation return
both the coordinates and the color information.

(d) Finally, the object p is returned.

Note that the procedure coloredPoint is effectively a constructor for objects that have class
point but also have a color attribute. It could be called a factory method .

7.2 A Case Study: Dijkstra’s Algorithm

In this section we show how to represent a weighted directed graph G = 〈V, E, length〉 as a class.
Here, V is the set of nodes, E is the set of edges, where an edge is a pair of nodes, and

length : E → N

is a function assigning a length to every edge. We will present Dijkstra’s algorithm for computing
distances in a weighted directed graph. Figure 7.8 on page 80 shows a weighted directed graph.
The set of nodes V of this graph is given as

V = {1, 2, 3, 4, 5},
the set of edges is

E = {〈1, 5〉, 〈1, 3〉, 〈5, 2〉, 〈3, 2〉, 〈2, 4〉, 〈3, 4〉},
and the function length is given as the relation

length =
{ 〈

〈1, 5〉, 3
〉

,
〈

〈1, 3〉, 5
〉

,
〈

〈5, 2〉, 1
〉

,
〈

〈3, 2〉, 2
〉

,
〈

〈2, 4〉, 4
〉

,
〈

〈3, 4〉, 7
〉}

.

For example, length(〈1, 5〉) = 3 and length(〈1, 3〉) = 5. In this graph, the shortest path from the
node 1 to the node 4 is given by the list [1, 5, 2, 4] and therefore the distance between these nodes
is 3 + 1 + 4 = 8.

In order to compute the distances from a given node to all other nodes we first have to decide
how to represent a weighted directed graph. In our implementation of Dijkstra’s algorithm we will
assume that the set of nodes V is given as a set of consecutive natural numbers of the form

V = {1, 2, · · · , n − 1, n}.
Therefore, there is no need to store the set V . All we have to store is the number of nodes n. The set
of edges E and the function lengthwill be stored using (a variant of) an adjacency list representation.
To this end, we define a binary relation edges so that for every node x ∈ V the expression edges[x]
is a set of the form

edges[x] = {〈y1, w1〉, · · · 〈yn, wn〉},

— 79 —

http://en.wikipedia.org/wiki/Factory_method_pattern
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/Adjacency_list

7.2. A Case Study: Dijkstra’s Algorithm Chapter 7. Classes and Objects

Figure 7.8: A simple weighted directed graph.

so that there is an edge form x to yi for all i = 1, · · · , n and, furthermore, the length of this edge
is wi, i.e. we have

length(〈x, yi〉) = wi for all i = 1, · · · , n.

Stated differently, if x and y are nodes in V such that 〈x, y〉 is an edge in E of length w, then we
have

〈y, w〉 ∈ edges[x].

For example, the relation edges for the graph shown in Figure 7.8 can be defined in SetlX as
follows:

edges := { [1, {[5,3]], [3,5]}], [5, {[2,1]}],
[3, {[2,2], [4,7]}], [2, {[4,4]}], [4, {}] };

Now we are ready to present Dijkstra’s algorithm in SetlX. Figure 7.9 on page 81 shows the
implementation of the class graph that is used to represent a weighted directed graph. We discuss
the implementation line by line.

1. Line 1 starts to define the class graph and the constructor for this class. In SetlX, every
class has exactly one constructor and the definition of the class and the constructor are the
same.

In this case, the constructor takes two arguments.

(a) The first argument numberNodes specifies the number of nodes. Implicitly, this argu-
ment also specifies the set of nodes of the graph since we have agreed that the set of
nodes V has the form

V = {1, 2, · · · , n − 1, n}.
Therefore, since numberNodes is the number of nodes, we must have n = numberNodes.

(b) The second argument edges specifies both the set of edges and the function length in
the way discussed above.

— 80 —

Chapter 7. Classes and Objects 7.2. A Case Study: Dijkstra’s Algorithm

1 class graph(numberNodes, edges) {

2 mNumberNodes := numberNodes;

3 mEdges := edges;

4

5 static {

6 shortestPath := procedure(source) {

7 oo := mathConst("Infinity");

8 dist := { [x, oo]: x in [1 .. mNumberNodes] };

9 dist[source] := 0;

10 fringe := { [0, source] };

11 visited := {};

12 while (fringe != {}) {

13 [d, u] := first(fringe);

14 fringe -= { [d, u] };

15 for ([v,l] in mEdges[u] | !(v in visited)) {

16 if (d + l < dist[v]) {

17 dvOld := dist[v];

18 dvNew := d + l;

19 dist[v] := dvNew;

20 fringe -= { [dvOld, v] };

21 }

22 fringe += { [dist[v], v] };

23 }

24 visited += { u };

25 }

26 return dist;

27 };

28 }

29 }

Figure 7.9: A class to represent graphs with an implementation of Dijkstra’s algorithm.

2. Line 2 and 3 define and assign the member variables mNumberNodes and mEdges. Every
object o of class graph will therefore have the two attributes mNumberNodes and mEdges.
For a given object o, these attributes can be accessed as o.mNumberNodes and o.mEdges
respectively. These variables store the number of nodes and the edges in the way discussed
previously.

3. Line 5 declares the beginning of a static block which ends in line 28. In this case, the static
block contains only the definition of the variable shortestPath. Of course, if o is an object
of class graph then o.shortestPath will access the function stored in the static variable
shortestPath. We defer the discussion of the implementation of this function.

At this point, it should be noted that the function shortestPath accesses the variables mNumberNodes
and mEdges and these variables are not static. The reason the function shortestPath is defined
static is the fact that the implementation of this function is always the same, no matter what the
graph is. Therefore, there is no need to store this implementation on a per object basis. Hence, it
is sufficient to provide this function as a static variable of the class graph. Of course, calling this
function as

graph.shortestPath(s)

— 81 —

7.2. A Case Study: Dijkstra’s Algorithm Chapter 7. Classes and Objects

wouldn’t make any sense as then the variables mNumberNodes and mEdges would both be unde-
fined. In order to call this function, we need to have an object g of class graph. Then it will make
sense to write

g.shortestPath(s)

as in this case the function shortestPath has access to the member variables mNumberNodes and
mEdges that are stored in the object g.

Let us now briefly explain the implementation of the function shortestPath. This function
gets a single node source as its argument and it will compute the distance of all other nodes
from the node source. This distance will be represented as a binary relation that is stored in the
variable dist. The elements of this binary relation will be pairs of the form

[x, d]

where x is a node and d is the distance of this node. When given the graph g depicted in Figure
7.9, the expression

g.shortestPath(1)

will yield the result

{[1, 0], [2, 4], [3, 5], [5, 3], [4, 8]}.
This elements of this binary relation are to be interpreted as follows:

1. The distance of the node 1 from the node 1 is obviously 0.

2. The distance of the node 2 from the node 1 is 4. The path [1, 5, 2] exhibits this length.

3.
...

4. The distance of the node 4 from the node 1 is 8. The path [1, 5, 2, 4] is the shortest path
connecting the node 1 with the node 4 and has length 8.

The relation dist, which is computed and returned by the function shortestPath, is initialized
in line 8 to assign the distance ∞ for every node x of the graph. This distance can be seen as an
upper estimate of the minimum length of a path connecting the source to the node x. Since we
do not yet know whether the node x is reachable from the node source at all, we initialize the
distance to ∞. Initially, the only node that is definitely reachable from the node source is the
node source itself. Therefore, dist[source] is set to 0 in line 9.

The algorithm to compute all distances maintains two data structures.

1. fringe is the set of those nodes x that have already been encountered when traversing the
graph, but which have not been fully explored in the sense that there are nodes y such that
there is an edge 〈x, y〉 and the node y has not been visited.

However, instead of just storing these nodes, for every node y the set fringe stores a pair
of the form

[w, y],

where w is the best estimate of the distance of the node y from the node source. Initially,
we have only visited the node source and its distance from source is obviously 0. Therefore,
fringe is initialized as

{ [0, source] }
in line 13. Since a node u with distance d is stored as the pair [d, u], the set fringe can
be used as a priority queue. The reason is that in SetlX every set is stored as an ordered
binary tree. Therefore, the elements of a set are ordered and it is easy to pick the smallest

— 82 —

Chapter 7. Classes and Objects 7.3. Representing Complex Numbers as Objects

element of a set using the function first. Since, furthermore, lists (and pairs in particular)
are ordered lexicographically, the first element in the set fringe is the pair [d, u] with the
smallest value of d, i.e. the node u in the set fringe that is closest to the source.

2. visited is the set of nodes that habe been visited in the following sense: A node x is said
to have been visited if all of the neighbours of x, i.e. all nodes y such that there is an edge
〈x, y〉 have been inspected and have been assigned a distance. It may be the case that the
distance assigned to y will improve later, but once a node x is added to the set visited, the
distance of x from source is known. Initially, the set visited is empty.

The workhorse of the function shortestPath is the while-loop in line 12. As long as there are
nodes u in the fringe we try to improve the estimate dist[v] for all nodes v such that there is
an edge 〈u, v〉 from u to v. The idea is that if

dist[u] + l < dist[v], where l is the length of the edge 〈u, v〉
then we can improve our estimate of dist[v] by assigning

dist[v] := dist[u] + l;

After updating the distance of node v, we have to add this node to the fringe so that we can
in turn deal with those nodes that are reachable from node v. The thing that makes Dijkstra’s
algorithm fast is the fact that once a node is visited we know that its distance can not be improved
in the future. A proof of this fact can be found in a paper of Dijkstra [Dij59].

Remark: At this point you might feel a little bit disappointed because the previous example
has not made much use of the object-oriented features of SetlX. However, that is exactly the
point of this example: Of course we could have implemented graph nodes as object of some class
and do the same for edges. However, the resulting program would then suffer from code bloat.
We do not think that object-oriented programming should be used for the sake of object-oriented
programming but rather see it as a convenient method to encapsulate data, nothing more. In
particular, an object-oriented program is not, in general, better than a program that does not
use object-oriented features. We therefore advocate to use classes when this is either necessary or
convenient but not for the sake of object-oriented programming.

7.3 Representing Complex Numbers as Objects

Our next example deals with complex numbers. Remember that complex numbers have the form

z = x + y · i, where x, y ∈ R and i · i = −1.

Assume that we have to perform a number of intricate calculations using complex numbers. One
way we could do this is by representing a complex number x + y · i as a pair [x, y]. Then we
would have to implement functions to add, subtract, multiply, and divide complex numbers. For
example, methods to add and multiply two complex numbers would have the following form:

While it is certainly possible to represent complex numbers in this way, this method is not
very convenient. One reason is that a even a moderately sized formula involving complex num-
bers would be more or less unreadable when implemented using functions like addComplex and
multiplyComplex. Fortunately, there is a better way to represent complex numbers in SetlX.
Figure 7.11 shows how we can define the class complex that represents complex numbers. In fact,
complex is both a class and a constructor for this class. This constructor takes two arguments:

1. real is the real part of the complex number that is represented, while

2. imag is the imaginary part.

— 83 —

http://www-m3.ma.tum.de/foswiki/pub/MN0506/WebHome/dijkstra.pdf
http://en.wikipedia.org/wiki/Complex_number

7.3. Representing Complex Numbers as Objects Chapter 7. Classes and Objects

1 addComplex := procedure(z1, z2) {

2 [x1, y1] := z1;

3 [x2, y2] := z2;

4 return [x1 + x2, y1 + y2];

5 };

6 multiplyComplex := procedure(z1, z2) {

7 [x1, y1] := z1;

8 [x2, y2] := z2;

9 return [x1*x2 - y1*y2, x1*y2 + x2*y1];

10 };

Figure 7.10: Representing complex numbers as pairs.

The class complex has two member variables. These member variables are called mReal and mImag.
These member variables are defined and initialized in lines 2 and 3. Therefore every object o of
class complex stores two numbers that can be accessed as

o.mReal and o.mImag.

In order to work with complex numbers we need methods to perform the basic arithmetic opera-
tions. The class complex in Figure 7.11 provides the implementation of functions to add, subtract,
multiply, and divide complex numbers. As these functions are not properies of a specific complex
number but rather apply to all complex numbers, these functions are defined as static members

of the class complex. We refer to these functions as methods and discuss them next.

1. First, line 5 defines a method called sum. Despite the looks of it, this method takes two
arguments. The first argument is implicit and it is called this. This argument is a reference
to an object of class complex. The second argument, which we have called that, also
references an object of class complex. Now in order to add the complex numbers this and
that we could just return a new complex number as follows:

complex(this.mReal + that.mReal, this.mImag + that.mImag);

However, as this is always implicit, the actual implementation of the method sum is even
simpler and we can instead write

complex(mReal + that.mReal, mImag + that.mImag);

to create a complex number that is the sum of the complex number this and that.

In order to invoke the method sum, let us first create two complex numbers z1 and z2 as
follows:

z1 := complex(1,2);

z2 := complex(3,1);

Now we have z1 = 1+2 · i and z2 = 3+1 · i. In order to add these numbers, we can execute
the assignment

z3 := z1.sum(z2);

This will set z3 to the complex number 4 + 3 · i. Fortunately, as SetlX supports operator
overloading, we can write

z3 := z1 + z2;

in order to compute the sum of z1 and z2.

— 84 —

Chapter 7. Classes and Objects 7.3. Representing Complex Numbers as Objects

1 class complex(real, imag) {

2 mReal := real;

3 mImag := imag;

4 static {

5 sum :=

6 that |-> complex(mReal + that.mReal, mImag + that.mImag);

7 difference :=

8 that |-> complex(mReal - that.mReal, mImag - that.mImag);

9 product := procedure(that) {

10 return complex(mReal * that.mReal - mImag * that.mImag,

11 mReal * that.mImag + mImag * that.mReal);

12 };

13 quotient := procedure(that) {

14 denom := that.mReal * that.mReal + mImag * mImag;

15 real := (mReal * that.mReal + mImag * that.mImag) / denom;

16 imag := (mImag * that.mReal - mReal * that.mImag) / denom;

17 return complex(real, imag);

18 };

19 power := procedure(that) {

20 return exp(that * log(this));

21 };

22 f_exp := procedure() {

23 r := exp(mReal);

24 return complex(r * cos(mImag), r * sin(mImag));

25 };

26 f_log := procedure() {

27 r := log(mReal * mReal + mImag * mImag) / 2;

28 return complex(r, atan2(mImag, mReal));

29 };

30 f_str := [] |-> mReal + " + " + mImag + " * i";

31 equals := procedure(that) {

32 return mReal == that.mReal && mImag == that.mImag;

33 };

34 }

35 }

Figure 7.11: The class complex implementing complex numbers.

Note: For operator overloading to work out we have to use the same method name that is
used when SetlX evaluates the corresponding operator. For the operator “+” performing
addition, the corresponding name is sum. Table 7.1 lists the names corresponding to the
operators provided by SetlX. Note that certain operators cannot be overloaded because
they are implicitly reduced to other operators. In particular

(a) a <==> b is reduced to a == b,

(b) a <!=> b is reduced to !(a == b),

(c) a != b is reduced to !(a == b),

(d) a <= b is reduced to a == b || a < b,

(e) a >= b is reduced to a == b || b < a, and

— 85 —

7.3. Representing Complex Numbers as Objects Chapter 7. Classes and Objects

(f) a > b is reduced to b < a.

Furthermore, the operators “+/” and “*/” are reduced to applications of the operators “+”
and “*”. Therefore, it does not make sense to overload these operators on their own. They
are implictitly overloaded when the operators “+” and “*” are overloaded.

Operator Name Operator Name

+ sum && conjunction

- difference || disjunction

* product => implication

/ quotient == equals

% modulo ** power

\ integerDivision < lessThan

>< cartesianProduct

Table 7.1: Operator names.

In case you want to find the names of these operators by yourself and do not have access to
this manual, then there is a neat trick to figure out these names. Define the class empty as

class empty() {}
Then, evaluating the expression

a == a

will result in the error message

Error in "a == a":

Member ’equals’ is undefined in ’object<{ class () {} }>’.
This message shows that the operator == has the name “equals”. Evaluating the expression

a <= a;

yields the error message

Error in "a <= a":

Error in substitute comparison "(a == a) || (a < a)":

Member ’equals’ is undefined in ’object< class () >’.

This error message shows that the expression “a <= b” is reduced to the expression
“(a == b) || (a < b)”.

Finally, note that Table 7.1 only lists the binary operators. There are three unary operators
that can be overloaded, too.

(a) The operator “-” has the name “minus” when used as a unary prefix operator.

(b) The operator “!” has the name “not” when used as a unary prefix operator. This
same operator has the name “factorial” when used as a unary postfix operator.

2. The implementation of the method difference in line 7 and 8 is similar to the implemen-
tation of sum.

3. The method product in line 9 takes two objects of class complex and computes their product
according to the formula

(x1 + y1 · i) · (x2 + y2 · i) = x1 · x2 − y1 · y2 + (x1 · y2 + x2 · y1) · i.
Instead of the “|->”-notation used to define the methods sum and difference we have

— 86 —

Chapter 7. Classes and Objects 7.3. Representing Complex Numbers as Objects

defined these methods via the keyword “procedure”. Defining this method via “procedure”
is more convenient as the implementation of the method requires more than one line. As a
rule of thumb, we recommend using the “|->”-notation only in cases where the body of a
function fits into a single line.

4. The method quotient in line 13 implements the division of complex numbers according to
the formula

x1 + y1 · i
x2 + y2 · i =

x1 · x2 + y1 · y2

x2 · x2 + y2 · y1
+

y1 · x2 − x1 · y2

x2 · x2 + y2 · y1
· i.

5. The method power raises the complex number this to the power of the argument that.
This is done with the help of the function exp and log via the equation

zz2

1 = exp(z2 · log(z1)).

Of course, for this to work we need to implement the functions exp and log for complex
numbers.

6. Line 22 defines the function “f exp”. Note that this function is not called “exp” but is
rather called “f exp”. In SetlX, if we want to redefine a predefined function like the
function “exp” we have to put the string “f ” in front of the function name. Later, when
we invoke the function, the prefix “f ” is dropped. For example, if we want to compute the
exponential of the imaginary unit i we can define

i := complex(0,1);

and can then invoke the exponential function as

exp(i);

The exponential of a complex number z = x+ y · i is computed according to Euler’s formula
as

exp(x + y · i) = exp(x) ·
(

cos(y) + sin(y) · i
)

.

7. Line 22 defines a function to compute the natural logarithm of a complex number z. In
order to compute the natural logarithm of the complex number z = x + y · i we rewrite z in
polar coordinates so that z = r · eϕ·i. Here, r and ϕ are given as

r =
√

x2 + y2 and ϕ = atan2(y, x).

Then we have

log(z) = log
(

r · eϕ·i
)

= log r + ϕ · i.

8. Line 30 defines a function that converts a complex number into a string. If a class C
provides a method with the name “f str”, then everytime that an object of class C needs
to be converted into a string this function is called implicitly.

9. Finally, we define the method equals in line 31. This method is automatically invoked when
two objects of class complex are compared using either the operator “==” or the operator
“!=”.

10. Unfortunately, it does not make sense to define the operator “<” for complex numbers.
Therefore, this operator has not been overloaded.

— 87 —

http://en.wikipedia.org/wiki/Euler%27s_formula

Chapter 8

Predefined Functions

This chapter lists the predefined functions. The chapter is divided into eight sections.

1. The first section lists all functions that are related to sets and lists.

2. The second section lists all functions that are related to strings.

3. The third sections lists all functions that are used to work with terms.

4. The following sections lists all mathematical functions.

5. The next section list all functions that are used to test whether an object has a given type.

6. Section six lists the functions that support interactive debugging.

7. Section seven discusses the functions related to I/O.

8. The last sections lists all those procedures that did not fit in any of the previous sections.

8.1 Functions and Operators on Sets and Lists

Most of the operators and functions that are supported on sets and lists have already been dis-
cussed. However, for the convenience of the reader, this section describes all operators and func-
tions. However, the discussion of those functions that have already been described previously will
be quite short.

1. +: For sets, the binary operator “+” computes the union of its arguments. For lists, this
operator appends its arguments.

2. *: If both arguments are sets, the operator “*” computes the intersection of its arguments.

If one argument is a list l and the other argument is a number n, then the list l is appended
to itself n times. Therefore, the expression

[1, 2, 3] * 3

yields the list

[1, 2, 3, 1, 2, 3, 1, 2, 3]

as a result. Instead of a list, the argument l can also be a string. In this case, the string l is
replicated n times.

3. -: The operator “-” computes the set difference of its arguments. This operator is only
defined for sets.

— 88 —

Chapter 8. Predefined Functions 8.1. Functions and Operators on Sets and Lists

4. %: The operator “%” computes the symmetric difference of its arguments. This operator is
only defined for sets.

Of course, all of the operators discussed so far are also defined on numbers and have the
obvious meaning when applied to numbers.

5. +/: The operator “+/” computes the sum of all the elements in its argument. These elements
need not be numbers. They can also be sets, lists, or strings. For example, if s is a set of
sets, then the expression

+/ s

computes the union of all sets in s. If s is a list of lists instead, the same expression builds
a new list by concatenating all lists in l.

6. */: The operator “*/” computes the product of all the elements in its argument. These
elements might be numbers or sets. In the latter case, the operator computes the intersection
of all elements.

7. arb: The function arb(s) picks an arbitrary element from the sequence s. The argument s
can either be a set, a list, or a string.

8. collect: The function collect(l) takes a list l of arbitrary elements. The purpose of this
function is to count the number of occurrences of these elements and to compute a binary
relation l such that for every element x in the list l, the binary relation r contains a pair
of the form [x, c], where c is the number of occurrences of x in the list l. For example, the
expression

r := collect(["a", "b", "c", "a", "b", "a"]);

sets the variable r to the value

{["a", 3], ["b", 2], ["c", 1]}.
Note that this value can be used as a binary relation.

9. first: The function first(s) picks the first element from the sequence s. The argument s
can either be a set, a list, or a string. For a set s, the first element is the element that is
smallest with respect to the function compare discussed in the last section of this chapter.

10. last: The function last(s) picks the last element from the sequence s. The argument s can
either be a set, a list, or a string. For a set s, the last element is the element that is greatest
with respect to the function compare discussed in the last section of this chapter.

11. from: The function from(s) picks an arbitrary element from the sequence s. The argument
s can either be a set, a list, or a string. This element is removed from s and returned. This
function returns the same element as the function arb discussed previously.

12. fromB: The function fromB(s) picks the first element from the sequence s. The argument s
can either be a set, a list, or a string. This element is removed from s and returned. This
function returns the same element as the function first discussed previously.

13. fromE: The function fromB(s) picks the last element from the sequence s. The argument s
can either be a set, a string, or a list. This element is removed from s and returned. This
function returns the same element as the function last discussed previously.

14. domain: If r is a binary relation, then the equality

domain(r) = { x :[x,y] in R }
holds. For example, we have

— 89 —

8.2. Functions for String Manipulation Chapter 8. Predefined Functions

domain({[1,2],[1,3],[5,7]}) = {1,5}.

15. max: If s is a set or a list containing only numbers, the expression max(s) computes the
biggest element of s. For example, the expression

max({1,2,3})
returns the number 3.

16. min: If s is a set or a list containing only numbers, the expression min(s) computes the
smallest element of s. For example, the expression

min({1,2,3})
returns the number 1.

17. pow: If s is a set, the expression pow(s) computes the power set of s. The power set of s is
defined as the set of all subsets of s. For example, the expression

pow({1,2,3})
returns the set

{{}, {1}, {1, 2}, {1, 2, 3}, {1, 3}, {2}, {2, 3}, {3}}.

18. range: If r is a binary relation, then the equality

range(r) = { y :[x,y] in R }
holds. For example, we have

range({[1,2],[1,3],[5,7]}) = {2,3,7}.

19. reverse: If l is a list or string, then reverse(l) returns a list or string that contains the
elements of l in reverse order. For example,

reverse([1,2,3])

returns the list

[3,2,1].

20. sort: If l is a list or string, then sort(l) sorts l into ascending order. For example,

sort([3,2,1])

returns the list

[1,2,3].

8.2 Functions for String Manipulation

SetlX provides the following functions that are related to strings.

1. char: For a natural number n ∈ {1, · · · , 127}, the expression

char(n)

computes the character with the Ascii code n. For example, char(65) yields the string "A".

2. endsWith: The function endsWith is called as

endsWith(s, t).

Here, s and t have to be strings. The function succeeds if the string t is a suffix of the string

— 90 —

Chapter 8. Predefined Functions 8.2. Functions for String Manipulation

s, i.e. if there is a string r such that the equation

s = r + t

holds.

3. eval: The function eval is called as

eval(s).

Here, s has to be a string that can be parsed as a SetlX expression. This expression is then
evaluated in the current variable context and the result of this evaluation is returned. Note
that s can describe a SetlX expression of arbitrary complexity. For example, the statement

f := eval("procedure(x) { return x * x; }");
has the same effect as the following statement:

f := procedure(x) { return x * x; };
Defining a function f via eval(s) is useful because the string s can be the result of an
arbitrary computation.

4. execute: The function execute is called as

execute(s).

Here, s has to be a string that can be parsed as a SetlX statement. This statement is then
executed in the current variable context and the result of this evaluation is returned. Note
that s can describe a SetlX expression of arbitrary complexity. For example, the statement

execute("f := procedure(x) { return x * x; };");
has the same effect as the following statement:

f := procedure(x) { return x * x; };

5. matches: The function matches is called as

matches(s, r).

It returns true if the regular expression r matches the string s. This function can be
called with an optional third argument, which must be a Boolean value. In this case, if the
last argument is true and the regular expression r contains capturing groups, i.e. if parts
of the regular expression are enclosed in parentheses, then the substrings of the string s
corresponding to these groups are captured and the function returns a list of strings: The first
element of this list is the string s, and the remaining elements are those substrings of s that
correspond to the different capturing groups. Chapter 4 contains examples demonstrating
the use of this function.

6. join: The function join is called as

join(s, t).

Here, s is either a set or a list. First, the elements of s are converted into strings. Then
these elements are concatenated using the string t as separator. For example, the expression

join([1,2,3], "*")

yields the string "1*2*3".

The function join comes in handy to generate comma separated values.

7. replace: The function replace is called as

— 91 —

8.2. Functions for String Manipulation Chapter 8. Predefined Functions

replace(s, r, t).

Here, s is a string, r is a regular expression, and t is another string. Any substring u of the
string s that is matched by the regular expression r is replaced by the string t. The string
resulting from this replacement is returned. The string s itself is not changed. Chapter 4
contains examples demonstrating the use of this function.

8. replaceFirst: The function replaceFirst is called as

replace(s, r, t).

Here, s is a string, r is a regular expression, and t is another string. The first substring
u of the string s that is matched by the regular expression r is replaced by the string t.
The string resulting from this replacement is returned. The string s itself is not changed.
Chapter 4 contains examples demonstrating the use of this function.

9. split: The function split is called as

split(s, t).

Here, s and t have to be strings. t can either be a single character or a regular expression.
The call split(s, t) splits the string s at all occurrences of t. The resulting parts of s are
collected into a list. If t is the empty string, the string s is split into all of its characters.
For example, the expression

split("abc", "");

returns the list ["a", "b", "c"]. As another example,

split("abc xy z", " +");

yields the list

["abc", "xy", "z"].

Note that we have used the regular expression “+” to specify one or more blank characters.

Certain magic characters, i.e. all those characters that serve as operator symbols in regular
expressions have to be escaped if they are intended as split characters. Escaping is done by
prefixing two backslash symbols to the respective character as in the following example:

split("abc|xyz", "\\|");

The function split is very handy when processing comma separated values from CVS files.

10. str: The function str is called as

str(a)

where the argument a can be anything. This function computes the string representation of
a. For example, after defining the function f as

f := procedure(n) { return n * n; };
the expression str(f) evaluates to the string

"procedure(n) { return n * n; }".

11. toLowerCase: Given a string s, the expression toLowerCase(s) converts all characters of s
to lower case.

12. toUpperCase: Given a string s, the expression toUpperCase(s) converts all characters of s
to upper case.

— 92 —

Chapter 8. Predefined Functions 8.3. Functions for Term Manipulation

13. trim: Given a string s, the expression trim(s) returns a string that is s without all leading
or trailing white space characters. For example, the expression

trim(" abc xyz\n")

returns the string "abc xyz".

8.3 Functions for Term Manipulation

The following functions support terms.

1. args: Given a term t that has the form

F (s1, · · · , sn),

the expression args(t) returns the list

[s1, · · · , sn].

2. evalTerm: This function is called as

evalTerm(t).

Here, t has to be a term that represents a SetlX expression. This expression is then
evaluated in the current variable context and the result of this evaluation is returned. For
convenience, the term t can be produced by the function parse. For example, the statement

f := evalTerm(parse("procedure(x) { return x * x; }"));
has the same effect as the following statement:

f := procedure(x) { return x * x; };
The function evalTerm is an advanced feature of SetlX that allows for self modifying
programs. This idea is that a function definition given as a string can be transformed into
a term. This term can then be manipulated using the facilities provided by the match

statement and the modified term can finally be evaluated using evalTerm.

3. fct: Given a term t that has the form

F (s1, · · · , sn),

the expression fct(t) returns the functor F .

4. getTerm: The function getTerm is called as

getTerm(v).

It returns a term representing the value v. For example, the expression

canonical(getTerm(procedure(n) { return n * n; }))
produces the following output:

^procedure([^parameter(^variable("n"))],

^block([^return(^product(^variable("n"), ^variable("n")))])

)

However, there is one twist: If v is either a set or a list, then getTerm(v) transforms the
elements of v into terms and returns the resulting set or list.

5. makeTerm: Given a functor F and a list l = [s1, · · · , sn], the expression

— 93 —

8.4. Mathematical Functions Chapter 8. Predefined Functions

makeTerm(F, [s1, · · · , sn])

returns the term

F (s1, · · · , sn).

6. canonical: Given a term t, the expression canonical(t) returns a string that is the canonical
representation of the term t. The point is, that all operators in t are replaced by functors
that denote these operators internally. For example, the expression

canonical(parse("x+2*y"));

yields the string

^sum(^variable("x"), ^product(2, ^variable("y"))).

This shows that, internally, variables are represented using the functor ^variable and that
the operator “+” is represented by the functor ^sum.

7. parse: Given a string s, the expression

parse(s)

tries to parse the string s into a term. In order to visualize the structure of this term, the
function canonical disussed above can be used.

8. parseStatements: Given a string s, the expression

parseStatements(s)

tries to parse the string s as a sequence of SetlX statements. In order to visualize the
structure of this term, the function canonical disussed above can be used. For example,
the expression

canonical(parseStatements("x := 1; y := 2; z := x + y;"));

yields the following term (which has been formatted for easier readability):

^block([^assignment(^variable("x"), 1),

^assignment(^variable("y"), 2),

^assignment(^variable("z"), ^sum(^variable("x"), ^variable("y")))

])

8.4 Mathematical Functions

The function SetlX provides the following mathematical functions.

1. The operators “+”, “-”, “*”, “/”, and “%” compute the sum, the difference, the product, the
quotient, and the remainder of its operands. The remainder a%b is defined so that it satisfies

0 ≤ a % b and a % b < b.

2. The operator “\” computes integer divsion of its arguments. For two integers a and b, this
is defined such that

a = (a\b) * b + a % b

holds.

3. abs(x) calculates the absolute value of the number x.

— 94 —

Chapter 8. Predefined Functions 8.4. Mathematical Functions

4. ceil(x) calculates the ceiling function of x. Mathematically, ceil(x) is defined as the
smallest integer that is bigger than or equal to x:

ceil(x) := min{n ∈ Z | x ≤ n}.
For example, we have

ceil(2.1) = 3.

5. floor(x) calculates the flooring function of x. Mathematically, floor(x) is defined as the
largest integer that is less than or equal to x:

floor(x) := max{n ∈ Z | n ≤ x}.
For example, we have

floor(2.9) = 2.

6. mathConst(name) can be used to compute mathematical constants. At the moment, and π,
Euler’s number e, and infinity are supported. Therefore, the expression

mathConst("pi")

yields the result 3.141592653589793, while

mathConst("e")

yields 2.718281828459045. To get a number of infinite size, we can write

mathConst("infinity").

SetlX uses the notation “oo” to represent the mathematical symbol ∞. SetlX supports
a little bit of arithmetic using ∞. For example, the expression

mathConst("infinity") - 42

evaluates to infinity, while

1 / mathConst("infinity")

evaluates to 0. However, expressions like

mathConst("infinity") - mathConst("infinity");

do not have a meaningful interpretation and result in an error message.

7. nextProbablePrime(n) returns the next probable prime number that is greater than n. Here,
n needs to be a natural number. The probability that the result of nextProbablePrime(n)
is not a prime number is less than 2−100. For example, to find the smallest prime number
greater than 1000 we can use the expression

nextProbablePrime(1000).

8. int(s) converts the string s into a number. The function int can also be called if s is already
a number. In this case, if s is an integer number, it is returned unchanged. Otherwise, the
floating point part is truncated. Therefore, the expression

int(2.9)

returns the integer 2.

9. rational(s) converts the string s into a rational number. For example the expression

rational("2/7")

will return the rational number 2/7. The function rational can also be invoked on floating

— 95 —

8.4. Mathematical Functions Chapter 8. Predefined Functions

point numbers. For example, the expression

rational(mathConst("e"))

yields the result 6121026514868073/2251799813685248. The expression rational(q) returns
q if q is already a rational number.

10. double(s) converts the string s into a floating point number. For example the expression

double("0.5")

will return the floating point number 0.5. The function double can also be invoked on
rational numbers. For example, the expression

double(2/7)

yields 0.2857142857142857. The expression double(r) returns r if r is already a floating
point number.

The implementation of floating point numbers is based on the Java class Double. Therefore,
floating point numbers satisfy the specification given in the IEEE standard 754 for the
arithmetic of floating point numbers.

11. Furthermore, the trigonometrical functions sin, cos, tan and the associated inverse trigono-
metrical functions asin, acos, and atan are all supported. For example, the expression

sin(mathConst("pi")/2);

yields 1.0.

12. The functions atan2(y, x) and hypot(x, y) are usefull when converting a point 〈x, y〉 from
cartesian coordinates into polar coordinates. If a point p has cartesian coordinates 〈x, y〉
and polar coordinates 〈r, ϕ〉, then

ϕ = atan2(y, x) and r = hypot(x, y).

Therefore, hypot(x, y) =
√

x2 + y2, while as long as both x > 0 and y > 0 we have

atan2(y, x) = atan
(

y
x

)

.

13. exp(x) computes ex where e is Euler’s number. Therefore, the expression

exp(1)

yields 2.718281828459046.

14. expm1(x) computes ex − 1. This function is usefull when computing values of ex where the
absolute value of x is very small.

15. log(x) computes the natural logarithm of x. This function is the inverse function of the
exponential function exp. Therefore, we have the equation

log(exp(x)) = x.

This equation is valid as long as there is no overflow in the computation of exp(x).

16. log1p(x) computes ln(x+1), where ln denotes the natural logarithm. This function should
be used to compute logarithms for values that are very near to 1.

17. log10(x) computes the base 10 logarithm of x.

18. sqrt(x) computes the square root
√

x. Therefore, as long as x is not too large, the equation

sqrt(x*x)= x

is valid.

— 96 —

Chapter 8. Predefined Functions 8.4. Mathematical Functions

19. cbrt(x) computes the cubic root 3
√

x. Therefore, as long as x is not too large, the equation

cbrt(x*x*x) = x

is valid.

20. round(x) rounds the number x to the nearest integer.

21. nDecimalPlaces(q, n) takes a rational number q and a positive natural number n as argu-
ments. It converts the rational number q into a string that denotes the value of q in decimal
floating point notation. This string contains n digits after the decimal point. Note that
these digits are truncated, there is no rounding involved. For example, the expression

nDecimalPlaces(2/3,5)

yields the string “0.66666”, while

nDecimalPlaces(1234567/3,5) returns “411522.33333”.

22. ulp(x) returns the difference between the floating point number x and the smallest floating
point number bigger than x. For example, when working with 64 bits floating point numbers
(which is the default), we have

ulp(1.0) = 2.220446049250313E-16.

ulp is the abbreviation for unit in the last place.

23. signum(x) computes the sign of x. If x is positive, the result is 1.0, if x is negative, the
result is −1.0. If x is zero, signum(x) is also zero.

24. sinh(x) computes the hyperbolic sine of x. Mathematically, the hyperbolic sine is defined
as

sinh(x) := 1

2
·
(

ex − e−x
)

.

25. cosh(x) computes the hyperbolic cosine of x. Mathematically, the hyperbolic cosine is
defined as

cosh(x) := 1

2
·
(

ex + e−x
)

.

26. tanh(x) computes the hyperbolic tangent of x. Mathematically, the hyperbolic tangent is
defined as

tanh(x) :=
sinh(x)

cosh(x)
.

27. isPrime tests whether its argument is a prime number. Currently, this function has a naive
implementation and is therefore not efficient.

28. isProbablePrime tests whether its argument is a prime number. The test used is probabilis-
tic. If the function tested is indeed prime, the test will succeed. If the function is not prime,
the predicate isProbablePrime neverthelsee might return true. However, the probability
that this happens is less than 2−30.

It should be noticed that the implementation of isProbablePrime is based on random
numbers. Therefore, in rare cases different invocations of isProbablePrime might return
different results.

— 97 —

8.5. Generating Random Numbers and Permutations Chapter 8. Predefined Functions

8.5 Generating Random Numbers and Permutations

In order to generate random numbers, SetlX provides the functions rnd and random. The easiest
to use of these function is random. The expression

random()

generates a random number x such that

0 ≤ x and x ≤ 1

holds. This will be a floating point number with 64 bits. For debugging purposes it might be
necessary to start SetlX with the parameter

--predictableRandom.

In this case, the sequence of random numbers that is generated by the function random and rnd is
always the same. This is useful when debugging a program working with random numbers. The
function

resetRandom()

provides another way to reset the random number generator to its initial state.
The function random can also be called with an argument. The expression

random(n)

is equivalent to the expression

n * random().

The function rnd has a number of different uses.

1. If l is either a list or a set, then the expression

rnd(l)

returns a random element of l.

2. If n is an natural number, then

rnd(n)

returns a natural number k such that we have

0 ≤ k and k ≤ n.

3. If n is a negative number, then

rnd(n)

returns a negative number k such that we have

n ≤ k and k ≤ 0.

4. In order to generate random rational numbers, the function rnd has to be called with two
arguments. The expression

rnd(a/b, n)

is internally translated into the expression

rnd(n− 1) * a / (b * (n − 1)).

Therefore, if a is positive, the number returned is a random number between 0 and the
fraction a/b and there will be n different possiblities, so the parameter n is used to control

— 98 —

Chapter 8. Predefined Functions 8.5. Generating Random Numbers and Permutations

the granularity of the results. For example, the expression

rnd(1/2,6)

can return any of the following six fractions:

0, 1/10, 2/10, 3/10, 4/10, 5/10,

while the expression rnd(1/2,101) could return 101 different results, namely any fraction
of the form

a/100 such that a ∈ {0, 1, · · ·100}.
Of course, the user will never see a result of the form 50/100 as this is immmediately reduced
to 1/2.

The second parameter also works if the first argument is a natural number. For example,
the expression random(1,11) returns one of the following eleven fractions:

0, 1/10, 2/10, 3/10, 4/10, 5/10, 6/10, 7/10, 8/10, 9/10, 10/10.

8.5.1 shuffle

The function shuffle shuffles a list or string randomly. For example, the expression

shuffle("abcdef")

might yield the result "dfbaec", while

shuffle([1,2,3,4,5,6,7])

might yield the list [1, 7, 4, 6, 3, 5, 2].

8.5.2 nextPermutation

The function nextPermutation can be used to enumerate all possible permutations of a given
list or string. For example, the function printAllPermutations shown in Figure 8.1 prints all
permutations of a given list or string. Evaluation of the expression

printAllPermutations([1,2,3])

yields the following output:

[1, 2, 3]

[1, 3, 2]

[2, 1, 3]

[2, 3, 1]

[3, 1, 2]

[3, 2, 1]

1 printAllPermutations := procedure(l) {

2 while (l != om) {

3 print(l);

4 l := nextPermutation(l);

5 }

6 };

Figure 8.1: Printing all permutations of a given list or string.

— 99 —

8.6. Type Checking Functions Chapter 8. Predefined Functions

8.5.3 permutations

Given a set, list or string l, the expression

permutations(l)

returns a set of all permutations of l. For example, the expression

permutations("abc")

returns the set

{"abc", "acb", "bac", "bca", "cab", "cba"}.
Likewise, the expression

permutations({1, 2, 3})
yields the result

{[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]}.

8.6 Type Checking Functions

SetlX provides the following functions to check the type of a given function.

1. isBoolean tests whether its argument is a Boolean value.

2. isDouble tests whether its argument is a floating point number.

3. isError tests whether its argument is an error object.

For example, consider the following code:

try { throw("foo"); } catch (e) { print(isError(e)); }

Here, the exception e that gets caught has been thrown by the user and therefore is not an
error. Hence, this program fragment prints false. However, the program fragment

try { om+1; } catch (e) { print(isError(e)); }

will indeed print true, as the evaluation of om+1 raises an exception that signifies an error.

4. isInfinite tests whether its argument is a floating point number that represents either
positive or negative infinity.

5. isInteger tests whether its argument is an integer number.

6. isList tests whether its argument is a list.

7. isMap tests whether its argument is a binary relation that maps every element in its domain
uniquely into an element of its range. Therefore, a binary relation r is not a map if it contains
two pairs

[x,y1] and [x,y2]

such that y1 6= y2.

8. isNumber tests whether its argument is a number.

9. isProcedure tests whether its argument is a procedure.

10. isRational tests whether its argument is a rational number.

— 100 —

Chapter 8. Predefined Functions 8.7. Debugging

11. isSet tests whether its argument is a set.

12. isString tests whether its argument is a string.

13. isTerm tests whether its argument is a term.

14. isObject tests whether its argument is an object.

8.7 Debugging

SetlX supports a few functions to help with debugging:

1. trace: This function is called as either

trace(true) or trace(false).

The expression trace(true) switches tracing on: Afterwards, all assignments are written
to the terminal window running SetlX. To switch tracing of, call trace(false).

2. stop: The function stop is called as

stop(id).

Here, the optional parameter id is a string that reminds you of the location in the program
where it was inserted. When executed, this function produces a prompt. Confirm with no
input to continue the execution, or enter comma separated variable names to display their
current value. Enter ‘All’ to display all variables in the current scope. This function always
returns zero, therefore it is often possible to call this function inside expressions.

3. assert: The function assert is called as

assert(condition, msg).

Here, condition is an expression that has to yield either true or false when evaluated. If
the condition is true, the function assert has no further effect. However, if the evaluation
of condition yields the value false, then the execution of the program is terminated and the
error message msg is printed.

SetlX has an option “--noAssert”. The short form of this option is “-a”. If this option is
activated, the function assert is not evaluated. Hence, in order to speed up the program,
this option can be used to switch off all assertions.

8.8 I/O Functions

This section lists all functions related to input and output.

8.8.1 appendFile

The function appendFile is called as

appendFile(fileName, l).

Here, fileName is a string denoting the name of a file, while l is a list of strings. If file a with the
specified name does not exist, it is created. Then the strings given in l are appended to the file.
Each string written to the specified file is automatically terminated by a newline character.

— 101 —

8.8. I/O Functions Chapter 8. Predefined Functions

8.8.2 deleteFile

The function deleteFile is called as

deleteFile(fileName).

Here, fileName is a string denoting the name of a file. If a file with the specified name does exist,
it is deleted. In this case the function returns true. If a file with the specified name does not
exist, the function returns false instead.

8.8.3 get

The function get is called as

get(s).

Here, s is a string that is used for a prompt. This argument is optional. The function prints s and
then returns the string that the user has supplied. If no string is supplied, get uses the prompt
": ".

8.8.4 load

The function load is called as

load(file).

Here, file has to be a string that denotes a file name, including the extension of the file. Further-
more, file is expected to contain valid SetlX commands. These commands are then executed. In
general, most of the commands will be definitions of functions. These function can then be used
interactively.

8.8.5 loadLibrary

The function loadLibrary is called as

loadLibrary(file).

Here, file has to be a string that denotes a file name, excluding the extension of the file. This file
is assumed to be located in the directory that is specified by the environment variable

SETLX LIBRARY PATH.

There are three different ways to set this variable.

1. The variable can be set a in file like “.profile” or “.bashrc”, or something similar. De-
pending on the type of shell you are using, these files are automatically executed when a
new shell is started.

2. The variable can be set manually in the shell.

3. The variable can be set using the option “--libraryPath”.

The specified file is expected to contain valid SetlX commands.

8.8.6 multiLineMode

The function multiLineMode is called as

multiLineMode(flag).

Here, flag should be an expression that evaluates to a Boolean value. The function either activates

— 102 —

Chapter 8. Predefined Functions 8.8. I/O Functions

or deactivates multi line mode. If multi line mode is activated, then in a shell the next input
expression is only evaluated after the user hits the return key twice. Multi line mode makes it
possible to enter statements spanning serveral lines interactively. However, normally this mode is
inconvenient, as it requires the user to press the return key twice in order to evaluate an expression.
Therefore, by default multi line mode is not active. Multi line mode can also be activated using
the option “--multiLineMode” when starting SetlX.

8.8.7 nPrint

The function nPrint is called as

nPrint(a1, · · · , an).

It takes any number of arguments and prints these arguments onto the standard output stream.
In contrast to the function print, this function does not append a newline to the printed output.

8.8.8 nPrintErr

The function nPrintErr is called as

nPrintErr(a1, · · · , an).

It takes any number of arguments and prints these arguments onto the standard error stream. In
contrast to the function printErr, this function does not append a newline to the printed output.

8.8.9 print

The function print is called as

print(a1, · · · , an).

It takes any number of arguments and prints these arguments onto the standard output stream.
After all arguments are printed, this function appends a newline to the output.

8.8.10 printErr

The function printErr is called as

printErr(a1, · · · , an).

It takes any number of arguments and prints these arguments onto the standard error stream.
After all arguments are printed, this function appends a newline to the output.

8.8.11 read

The function read is called as

read(s).

Here, s is a string that is used for a prompt. This argument is optional. The function prints s
and then returns the string that the user has supplied. However, leading and trailing white space
is removed from the string that has been read. If the string can be interpreted as a number, this
number is returned instead. Furthermore, this function keeps prompting the user for input until
the user enters a non-empty string.

— 103 —

8.9. Miscellaneous Functions Chapter 8. Predefined Functions

8.8.12 readFile

The function readFile is called as

readFile(file, lines).

The second parameter lines is optional. It reads the specified file and returns a list of strings.
Each string corresponds to one line of the file. This second parameter lines specifies the list of
line numbers to read. For example, the statement

read("file.txt",[42] + [78..113])

will read line number 42 and the lines 78 up to and including line 113 of the given file. This feature
can be used to read a file in chunks of 1000 lines as in the following example:

n := 1;

while (true) {

content := readFile("file", [n .. n + 999]);

if (content != []) {

// process 1k lines

....

n += 1000;

} else {

break;

}

}

8.8.13 writeFile

The function writeFile is called as

writeFile(f, l).

Here, f is the name of the file and l is a list. The file f is created and the list l is written into the
file f . The different elements of l are separated by newlines.

8.9 Miscellaneous Functions

This final section lists some functions that did not fit into any of the other sections.

8.9.1 abort

This function aborts the execution of the current function. This is done by raising an exception.
Usually, the function abort is called with one argument. This argument is then thrown as an
exception. For example, the statement

try { abort(1); } catch (e) { print("e = e"); }
will print the result

e = Error: abort: 1.

Note that an exception raised via abort can not be catched with the keyword catchUsr. The
keyword catchUsr will only catch exceptions that are explicitly thrown by the user via invocation
of throw.

— 104 —

Chapter 8. Predefined Functions 8.9. Miscellaneous Functions

8.9.2 cacheStats

The function cacheStats is called as

cacheStats(f).

Here, f is a cached procedure, i.e. a procedure that is declared using the keyword “cachedProcedure”.
Note that f has to be the procedure itself, not the name of the procedure! The returned result is
a set of the form

{["cache hits", 996], ["cached items", 1281]}.
This set can be interpreted as a map.

8.9.3 clearCache

The function clearCache is called as

clearCache(f).

Here, f is a cached procedure, i.e. a procedure that is declared using the keyword “cachedProcedure”.
Note that f has to be the procedure itself, not the name of the procedure! The invocation of
clearCache(f) frees the memory associated with the cache for the function f . It should be used
if the previously computed values of f are not likely to be needed for the next computation.

8.9.4 compare

The function compare is called as

compare(x, y).

Here, x and y are two arbitrary values. This function returns −1 if x is less than y, +1 if x is
bigger than y and 0 if x and y are equal. If x and y have a numerical type, then the result of
compare(x, y) coincides with the result produced by the operator “<”. If x and y are both lists,
then the lists are compared lexicographically. The same remark holds if x and y are both sets. If x
and y have different types, then the result of compare(x, y) is implementation defined. Therefore,
the user should not rely on the results returned in these cases.

The function compare is needed internally in order to compare the elements of a set. In SetlX

all sets are represented as ordered binary trees.

8.9.5 getScope

The function getScope is called as

getScope().

It returns a term representing the current scope. Here, the current scope captures the binding of
all variables. For example, suppose the user issues the following commands:

x := 1;

y := 2;

f := procedure(n) { return n * n; };

Then the current scope consists of the variables x, y, and f. Therefore, in this case the expression
getScope() returns the following term:

^scope({["f", procedure(n) { return n * n; }],

["getScope", ^preDefinedProcedure("getScope")], ["params", []],

["x", 1],

— 105 —

8.9. Miscellaneous Functions Chapter 8. Predefined Functions

["y", 2]

})

8.9.6 logo

The function logo is called as

logo().

In order to find how this function works, try it yourself.

8.9.7 now

The function now returns the number of milliseconds that have elapsed since the beginning of the
Unix epoch.

8.9.8 sleep

The function sleep takes one argument that has to be a positive natural number. The expression

sleep(t)

pauses the execution of the process running SetlX for t milliseconds. When printing output, this
can be used for visual effects.

— 106 —

Bibliography

[Ada80] Douglas Adams. The Hitchhiker’s Guide to the Galaxy. Harmony Books, New York,
1980.

[Bra90] Ivan Bratko. PROLOG Programming for Artificial Intelligence. Addison-Wesley, 2nd
edition, 1990.

[Dij59] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269–271, 1959.

[FM08] David Flanagan and Yukihiro Matsumoto. The Ruby Programming Language. O’Reilly,
2008.

[Fri06] Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly & Associates, 3rd edition,
2006.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata

Theory, Languages, and Computation. Addison-Wesley, 3rd edition, 2006.

[Kle09] Gerwin Klein. JFlex User’s Manual: Version 1.4.3. Technical report, Technische Uni-
versität München, 2009. Available at: http://jflex.de/jflex.pdf.

[Les75] Michael E. Lesk. Lex – A lexical analyzer generator. Comp. Sci. Tech. Rep. No. 39,
Bell Laboratories, Murray Hill, New Jersey, 1975.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT
Press, 1990.

[Sch70] Jacob T. Schwartz. Set theory as a language for program specification and program-
ming. Technical report, Courant Institute of Mathematical Sciences, New York Univer-
sity, 1970.

[SDSD86] J. T. Schwartz, R. B. Dewar, E. Schonberg, and E. Dubinsky. Programming With Sets:

An Introduction to SETL. Springer-Verlag, 1986.

[Sny90] W. Kirk Snyder. The Setl2 programming language: Update on current developments.
Technical report, Courant Institute of Mathematical Sciences, New York University,
1990. Available at
ftp://cs.nyu.edu/pub/languages/setl2/doc/2.2/update.ps.

[SS75] Gerald Jay Sussman and Guy L. Steele. Scheme: An interpreter for extended lambda
calculus. Technical report, MIT AI LAB, 1975.

[SS86] Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT Press, 1986.

[SS94] Leon Sterling and Ehud Y. Shapiro. The Art of Prolog - Advanced Programming Tech-

niques, 2nd Ed. MIT Press, 1994.

— 107 —

BIBLIOGRAPHY BIBLIOGRAPHY

[SW11] Robert Sedgewick and Kevin Wayne. Algorithms in Java. Pearson, 4th edition, 2011.

[vR95] Guido van Rossum. Python tutorial. Technical report, Centrum Wiskunde & Infor-
matica, Amsterdam, 1995.

[WS92] Larry Wall and Randal L. Schwartz. Programming Perl. O’Reilly and Assoc., 1992.

— 108 —

Appendix A

Graphical Library Functions

The following appendix lists the name of the functions that support the animation of algorithms in
SetlX. The functions are listed in alphabetical order. It should be noted that the graphical library
is an experimental feature that might be subject to considerable changes in the future. It should
also be noted that this library has been derived by Markus Jagiella from the file StdDraw.java
that is part of the booksite accompanying the excellent book on algorithms written by Robert
Sedgewick and Kevin Wayne [SW11].

1. gfx addPlayPauseButton

gfx addPlayPauseButton()

gfx addPlayPauseButton(boolean add)

Sets the Play/Pause Button on the animation frame visible (no parameter or true) or invisible
(false). Default is invisible.

Parameters:

add – the flag to set the visibility

2. gfx addSpeedSlider

gfx addSpeedSlider()

gfx addSpeedSlider(boolean add)

Creates a speed slider on the animation frame if called with either no parameter or arguments
true. Set the slider to invisible if the argument is false.

Parameters:

add – the flag to set the visibility

3. gfx arc

gfx arc(double x, double y, double r, double phi1, double phi2)

Draws an arc of radius r, centered on the point 〈x, y〉, from angle phi1 to phi2. The angles
are given in degrees.

Parameters:

x – the x coordinate of the center of the circle

y – the y coordinate of the center of the circle

r – the radius of the circle

phi1 – the starting angle. 0 would mean an arc beginning at 3 o’clock.

— 109 —

http://introcs.cs.princeton.edu/java/stdlib/StdDraw.java.html
http://algs4.cs.princeton.edu/home/

Chapter A. Graphical Library Functions

phi2 – the angle at the end of the arc.

For example, in order to get a 90 degree arc, phi2 should be phi1 + 90.

4. gfx circle

gfx circle(double x, double y, double r)

Draws a circle of radius r, centered on the point 〈x, y〉. The circle degenerates to a pixel if
the radius is too small.

Parameters:

x – the x-coordinate of the center of the circle

y – the y-coordinate of the center of the circle

r – the radius of the circle

5. gfx clear

gfx clear()

gfx clear(String color)

Clear the screen with the given color or the default color (white). Calls gfx show().

Parameters:

color – the color of the background

6. gfx ellipse

gfx ellipse(double x, double y, double semiMajorAxis, double semiMinorAxis)

Draws an ellipse with given semimajor and semiminor axis centered on 〈x, y〉.
Parameters:

x – the x-coordinate of the center of the ellipse

y – the y coordinate of the center of the ellipse

semiMajorAxis – the length of the semimajor axis of the ellipse

semiMinorAxis – the length of the semiminor axis of the ellipse

7. gfx filledCircle

gfx filledCircle(double x, double y, double r)

Draws a filled circle of radius r, centered on 〈x, y〉. The circle degenerates to a pixel if the
radius is too small.

Parameters:

x – the x-coordinate of the center of the circle

y – the y-coordinate of the center of the circle

r – the radius of the circle

8. gfx filledEllipse

gfx filledEllipse(double x, double y, double semiMajorAxis, double semiMinorAxis)

Draws an ellipse with given semimajor and semiminor axis centered on 〈x, y〉.
Parameters:

x – the x-coordinate of the center of the ellipse

y – the y-coordinate of the center of the ellipse

semiMajorAxis – the length of the semimajor axis of the ellipse

semiMinorAxis – the length of the semiminor axis of the ellipse

— 110 —

Chapter A. Graphical Library Functions

9. gfx filledPolygon

gfx filledPolygon(double[] x, double[] y)

Draws a filled polygon with the given 〈x[i], y[i]〉 coordinates.

Parameters:

x – an array of all the x-coordinates of the polygon

y – an array of all the y-coordinates of the polygon

10. gfx filledSquare

gfx filledSquare(double x, double y, double r)

Draws a filled square of side length 2 · r, centered on 〈x, y〉. This square degenerates to a
pixel if r is too small.

Parameters:

x - the x-coordinate of the center of the square

y - the y coordinate of the center of the square

r - the radius r is half the length of any side of the square

11. gfx getFont

String gfx getFont()

Returns the name of the current font i.e. “Arial”.

12. gfx getPenColor

String gfx getPenColor()

Returns the current color of the pen i.e.: “BLACK”.

13. gfx getPenRadius

double gfx getPenRadius()

Returns the current pen radius.

14. gfx hasNextKeyTyped

boolean gfx hasNextKeyTyped()

Returns true if the user has typed a key, false otherwise.

15. gfx isKeyPressed

gfx isKeyPressed(int keyCode)

Returns true if the key with the given keycode is currently pressed and false otherwise.

Parameters:

keyCode – the physical key code of the Java programming language

16. gfx isPaused

boolean gfx isPaused()

Returns true if the animation is paused when this statement is executed and false other-
wise.

— 111 —

Chapter A. Graphical Library Functions

17. gfx line

gfx line(double x0, double y0, double x1, double y1)

Draws a line from the point 〈x0, y0〉 to the point 〈x1, y1〉.
Parameters:

x0 – the x-coordinate of the starting point

y0 – the y-coordinate of the starting point

x1 – the x-coordinate of the destination point

y1 – the y coordinate of the destination point

18. gfx mouseX

double gfx mouseX()

Returns the value of the x-coordinate of the mouse.

19. gfx mouseY

double gfx mouseY()

Returns the value of the y-coordinate of the mouse.

20. gfx nextKeyTyped

String gfx nextKeyTyped()

Returns the next unicode character that was typed by the user. This function cannot identify
action keys such as “F1” or arrow keys.

21. gfx picture

gfx picture(double x, double y, String s)

gfx picture(double x, double y, String s, double w, double h)

Draws a picture in gif, jpg, or png format centered on the point 〈x, y〉. If the parameters
w and h are given, the picture is rescaled to a width of w and a height of h. If w or h is too
small, the picture degenerates into a pixel. This function calls gfx show().

Parameters:

x – the x-coordinate of the center of the image

y – the y-coordinate of the center of the image

s – the name of the file containing the image, i.e. “flower.gif”

w – the width of the image

h – the height of the image

22. gfx point

gfx point(double x, double y)

Draws a point at the coordinates 〈x, y〉.
Parameters:

x - the x-coordinate of the point to be drawn

y - the y-coordinate of the point to be drawn

— 112 —

Chapter A. Graphical Library Functions

23. gfx polygon

gfx polygon(double[] x, double[] y)

Draws a polygon with the given 〈x[i], y[i]〉 coordinates.

Parameters:

x - an array of all the x-coordinates of the polygon

y - an array of all the y-coordinates of the polygon

24. gfx rectangle

gfx rectangle(double x, double y, double halfWidth, double halfHeight)

Draws a rectangle of given half width and half height centered on 〈x, y〉.
Parameters:

x – the x-coordinate of the center of the rectangle

y – the y-coordinate of the center of the rectangle

halfWidth – the width of the rectangle is given as 2 · halfWidth
halfHeight – the height of the rectangle is given as 2 · halfHeight

25. gfx setCanvasSize gfx setCanvasSize(int w, int h)

Sets the window size to w×h pixels.

Parameters:

w – the width as a number of pixels

h – the height as a number of pixels

26. gfx setPaused

gfx setPaused(boolean paused)

Sets the start value of the Play/Pause button and determines whether the animation is
started in running or paused mode.

Parameters:

paused – if this is true the animation is paused

27. gfx setPenColor

gfx setPenColor()

gfx setPenColor(String color)

Sets the pen color to the given color or the default (BLACK) if no color is given. The available
pen colors are BLACK, BLUE, CYAN, DARKGRAY, GRAY, GREEN, LIGHT GRAY, MAGENTA, ORANGE,
PINK, RED, WHITE, and YELLOW.

Parameters:

color – the color of the pen

28. gfx setPenColorRGB

gfx setPenColorRGB(double r, double g, double b)

Sets the pen color to the color specified by the values of r, g, and b.

Parameters:

r – the luminosity of the red component of the color

g – the luminosity of the green component of the color

b – the luminosity of the blue component of the color

— 113 —

Chapter A. Graphical Library Functions

29. gfx setPenRadius

gfx setPenRadius()

gfx setPenRadius(double r)

Sets the pen size to the given size or the default if no parameters are passed.

Parameters:

r – the radius of the pen

30. gfx setFont

gfx setFont(String fontName)

gfx setFont()

Changes the current font or restores the default font if no argument is passed.

Parameters:

fontName – the name of the font i.e. “Arial”

31. gfx setScale

gfx setScale(double min, double max)

Set the x and y scale to the given values or the default if no parameters are passed (a
border is added to the values). Has the same effect as the calls setXscale(min,max) and
setYscale(min,max) combined.

Parameters:

min – the minimum value of the x and y scale

max – the maximum value of the X and Y scale

32. gfx setXscale

gfx setXscale()

gfx setXscale(double min, double max)

Set the x scale to the given values or the default if no parameters are passed (a border is
added to the values).

Parameters:

min – the minimum value of the x scale

max – the maximum value of the x scale

33. gfx setYscale

gfx setYscale()

gfx setYscale(double min, double max)

Set the y scale to the given values or the default if no parameters are passed (a border is
added to the values).

Parameters:

min – the minimum value of the y scale

max – the maximum value of the y scale

34. gfx show

gfx show()

Displays the animation on the screen. Calling this method means that the screen will be
redrawn after each invocation of line(), circle(), or square(). This is the default.

— 114 —

Chapter A. Graphical Library Functions

35. gfx show(int t)

Displays the animation on screen and pause for t milliseconds. Calling this method means
that the screen will not be redrawn after each invocation of line(), circle(), or square().
This is useful when there are many invocation of these function necessary to draw a complete
picture.

Parameters:

t – number of milliseconds to pause

36. gfx square

gfx square(double x, double y, double r)

Draws a square of side length 2 · r, centered on 〈x, y〉. The square degenerates to a pixel if
small r is too small.

Parameters:

x – the x-coordinate of the center of the square

y – the y coordinate of the center of the square

r – the side length of the square is 2 · r

37. gfx text

gfx text(double x, double y, String s)

Write the given text string in the current font, centered on 〈x, y〉. Calls gfx show().

Parameters:

x – the x coordinate of the center of the text

y – the y coordinate of the center of the text

s – the string

38. gfx textLeft

gfx textLeft(double x, double y, String s)

Write the given text string in the current font, right aligned at 〈x, y〉. Calls gfx show().

Parameters:

x – the x coordinate of the end of the text

y – the y coordinate of the end of the text

s – the string

39. gfx textRight

gfx textRight(double x, double y, String s)

Write the given text string in the current font, left aligned at 〈x, y〉. Calls gfx show().

Parameters:

x – the x coordinate of the beginning of the text

y – the y coordinate of the beginning of the text

s – the string

— 115 —

	Introduction
	Whetting Your Appetite
	Getting Started
	Boolean Values
	Sets
	Operators on Sets
	Set Comprehensions
	Miscellaneous Set Functions

	Lists
	Pairs, Relations, and Functions
	Procedures
	Strings
	Literal Strings

	Terms

	Statements
	Assignment Statements
	Functions
	Memoization

	Branching Statements
	if-then-else Statements
	switch Statements

	Matching
	String Matching
	List Matching
	Set Matching
	Term Matching
	Term Decomposition via List Assignment

	Loops
	while Loops
	do-while Loops
	for Loops

	Regular Expressions
	Using Regular Expressions in a match Statement
	Extracting Substrings
	Testing Regular Expressions
	Extracting Comments from a File
	Conditions in match Statements

	The scan Statement
	Additional Functions Using Regular Expressions

	Functional Programming and Closures
	Introductory Examples
	Introducing Functional Programming
	Implementing Counters via Closures

	Closures in Action

	Exceptions and Backtracking
	Exceptions
	Different Kinds of Exceptions

	Backtracking

	Classes and Objects
	Basic Examples
	Introducing Classes
	Simulating Inheritance

	A Case Study: Dijkstra's Algorithm
	Representing Complex Numbers as Objects

	Predefined Functions
	Functions and Operators on Sets and Lists
	Functions for String Manipulation
	Functions for Term Manipulation
	Mathematical Functions
	Generating Random Numbers and Permutations
	shuffle
	nextPermutation
	permutations

	Type Checking Functions
	Debugging
	I/O Functions
	appendFile
	deleteFile
	get
	load
	loadLibrary
	multiLineMode
	nPrint
	nPrintErr
	print
	printErr
	read
	readFile
	writeFile

	Miscellaneous Functions
	abort
	cacheStats
	clearCache
	compare
	getScope
	logo
	now
	sleep

	Graphical Library Functions

